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Abstract- In this paper variable bit rate VBR Moving Picture 
Experts Group (MPEG) coded full-motion video traffic is mod- 
eled by a nonlinear time-series process. The threshold autore- 
gressive (TAR) process is of particular interest. The TAR model 
is comprised of a set of autoregressive (AR) processes that are 
switched between amplitude sub-regions. To model the dynam- 
ics of the switching between the sub-regions a selection of am- 
plitude dependent thresholds and a delay value is required. To 
this end, an efficient and accurate TAR model construction algo- 
rithm is developed to model VBR MPEG-coded video traffic. 
The TAR model is shown to accurately represent statistical char- 
acteristics of the actual full-motion video trace. Furthermore, in 
simulations for the bit-loss rate actual and TAR traces show 
good agreement. 

Keywords: video modeling, MPEG, TAR, VBR, nonlinear 
model 

1. Introduction 
To better support video services on high speed and integrated 

networks an understanding of the characteristics of VBR video 
traffic is required. Video traces with low levels of scene activity 
have exponentially decaying temporal correlations with respect 
to time-lag [6,13]. Whereas video traces with non-uniform 
scene activity have frame sizes that change slowly over long 
time intervals. The autocorrelation function (ACF) for these 
types of video traces decay slowly or do not reach zero even for 
long lag intervals [1,15]. In addition, abrupt jumps in the frame 
size occur after a sccnc change. VBR video traces with non- 
uniform scene activity follow no specific probability distribution 
function (PDF) for the number of cells in scene change frames 
and for scene length [7]. VBR video traffic with moderate scene 
activity can also exhibit long-term correlation [12,14,16]. To 
model video traffic, methods that efficiently capture the switch- 
ing between these levels of activity are required. In this paper a 
new model for MPEG-coded VBR video is examined and veri- 
fied. Its usefulness in the characterization of full-motion video 
is discussed. 

The discrete autoregressive (DAR) model has been used to 
model broadcast-video traces generated by a DPCM-based cod- 
ing algorithm without motion compensation [7]. In the DAR(1) 
model, a finite-state Markov chain is used to generate sequence 
of states. These states are used to determine the frame sizes. 
This model requires only that the mean, variance, and autocorre- 
lation coefficient of intra-scene frames be determined. The 
DAR(1) model was not found to be accurate for all video traces 
tested, however. For the video conference traces, the DAR(1) 
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proved to be a good source model. 
A time-varying AR process was applied to model full-motion 

video coded by a DPCMDCT scheme [18]. The codec gener- 
ates video stream using a three-level motion classification, i.e. 
high-, medium-, and low-motion activities. Short-range depen- 
dence (SRD) was modeled using sub-AR(1) processes. A finite 
state-discrete-time Markov chain was used to choose between 
the sub-AR(1) models. The number of frames used to generate 
the model was 500 frames and two arbitrary thresholds were se- 
lected from bit-rate histogram of the video trace. Recently an 
enhanced Markov chain based approach has been used with suc- 
cess to analyze the traffic from single and two layer MPEG-2 
coders [15]. 

A scenic model [31 based on the DAR( 1) modeling approach 
has been used to model VBR traffic. Scene changes were esti- 
mated using differences in the number of bits between consecu- 
tive frames rather than by using a Markov process. To discern 
the scene changes, the VBR video trace was fnst passed through 
a median-filter having a length of 0.5 seconds. Using the out- 
put, the short-time mean was calculated using the 5 frame aver- 
age-filter. The short-time average value exhibits a significant 
change in the value at a scene boundary. Tests of the model us- 
ing full-motion video traces showed that for large buffer sizes 
the scenic model estimated cell-loss probability more accurately 
than the DAR( 1) model. A self-similar model was developed to 
estimate the long-range dependence (LRD) and was used in con- 
junction with SRD for VBR full-motion video traces [SI. In this 
work, self-similar traffic models were used to match the LRD, 
SRD, and probability density function (PDF). In queueing sim- 
ulations the model underestimated cell-loss rates when com- 
pared to the actual trace. In [lo] presence of a scene change in 
an MPEG video trace was determined using the difference in the 
frame bit count between two consecutive I-frames. Two thresh- 
olds were used as a measure of the scene activity. Intra-scene 
fluctuations for I-frames were estimated using an AR(2) process. 
Each frame type was fit to a lognormal distribution using the 
histogram. Composition of each frame type according to group 
of picture (GOP) format generated a video trace possessing the 
characteristics of VBR video traffic. 

In this paper a nonlinear time-series modeling method is de- 
veloped for VBR MPEG video traces. The TAR model [17] 
consists of a number of AR models. Each AR model has its 
own correlation structure and model order. Switching of the AR 
models is dependent on amplitude thresholds and the amplitude 
of a time-delayed sample. Therefore the conditions for transi- 
tions between the sub-regions is deterministic. The best TAR 
model is selected from evaluations of all possible TAR models 
realized from a given set of thresholds and time-delays. A new 
TAR model construction algorithm is examined which uses a 

significantly reduces computational cost and accurately finds the 
best TAR model. 

minimum variance criterion for model selection. The algorithm 
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The structure of the MPEG-coded full motion video trace is 
introduced in Section 2. The TAR model construction algorithm 
is presented in Section 3. Section 4 is devoted to the TAR mod- 
eling of a VBR MPEG-coded full-motion video trace. In sec- 
tion 5 ,  bit-loss rates are estimated for different buffer sizes and 
transmission speeds using the leaky bucket algorithm. Finally 
Section 6 is devoted to conclusions. 

2. VBR MPEG Video Trace 
A bits per frame trace of an MPEG-1 coded video sequence is 

shown in Figure 1. For different amplitude ranges, piecewise- 
constant frame sizes are observed. These constant regions may 
extend several hundred frames. Large amplitude changes are al- 
so observed at intermittent intervals. Scene changes generate 
large jumps in the frame size. The bit rates in successive frames 
in a scene are strongly correlated. The figure shows the bit 
count for frames 31,000 through 33,000 for the full-motion 
video James Bond. Fluctuations in the trace are necessary to re- 
tain constant video quality [21. 

In the case of the MPEG coding method [lll, three types of 
frames are used to code contents of the video. These are the I, P 
and B frames. The I-frames use intra-frame coding based on the 
discrete transform and entropy coding. The P-frames include 
motion compensation from previous I- or P-frames. The B- 
frames include bi-directional motion compensation. Typically, 
I-frames require more bits than P-frames. The B-frames have the 
lowest bandwidth requirement. After encoding is completed, 
deterministic and periodic frame sequences are generated. This 
sequence is called group of pictures (GOP) format. 

250000 I I 

200000 

3 1  000 31500 32000 32500 33000 
frames 

Figure 1: Representative sample path for a typical MPEG trace 

The MPEG-1 trace data used in this paper is available to pub- 
lic for research purpose from [4]. All the traces obtained from 
[4] have rather active scene changes. The traces for news and 
sports have more frequent jump bit-rates than the movie se- 
quences. The maximum number of frames in a trace is 40,000 
which is equal to about 30 minute-long video sequence for a 
source frame generation rate of 30 frames per second. The GOP 
pattem consists of 12 frames as having a pattem 
IBBPBBPBBPBB. The traces are encoded color images having 
a maximum of 12-bits per pixel. The picture size is 384 X 288 
pixels [5]. 
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Figure 2: (a)PDF of MPEG video trace (b)Scatter diagram of I frames 

The statistics of the MPEG traces are listed in Table 1. The 
peak to mean ratio is a rough measure of the degree of variabili- 
ty present in the trace. In all cases, the ratio is large. The PDF 
for the James Bond trace has a narrow peak near 24000 bits per 
frame. This peak primarily due to the B-frames, whereas the 
long tail includes contributions from I- and P-frames. The high- 
est bit-rates come from I-frames. 

Scene Mean Variance Peak to 
Type (bits/frame) Mean 

Movie( S tar Wars) 9313 1.7 10" 13 

Soccer game 25110 4.5 10' 8 

Table 1: VBR MPEG-coded video traces 

TV news 15358 3.8 10' 12 
Movie(James Bond) 24308 6.6 10' 10 

Movie(Terminator) 10905 1.0 108 7 

The one-lag scatter diagram of the I-frames, based on the 12 
frame period of the GOP format, is shown in Figure 2(b). A 
positive correlation with a single cluster is observed in the fig- 
ure. The slope of the linear regression line through the cluster 
has a value of nearly unity. This implies that I-frames remain 
close in amplitude at one-lag. Table 1 also demonstrates that 
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different video sequences using a single video coder can gener- 
ate statistically varying traces. This state-of-affairs may intro- 
duce problems in providing quality of services (QoS) and reli- 
able network performance. Thus a model is needed to charac- 
terize efficiently and accurately the degree of activity in the 
video trace. 

X 

3. The TAR Model 
The TAR model is a nonlinear time-series process comprised 

from a number of linear sub-models. Each amplitude switched 
AR process is constructed for specific amplitude range or sub- 
region. The AR model to be used at time n is determined by the 
amplitude x ( n - D )  where D denotes a time-delay. Also the 
amplitude thresholds are used to determine which AR model is 
to be activated. The TAR model for sub-region m is defined as ti) x(n) = x 

I p, I I 

if R ,  S x(n  - D )  < R,+l. The variable x is the time-series ob- 
served, m is the index denoting the sub-region, a?’ are coeffi- 
cients of the model for region m, u(”)(n) is a Gaussian distribut- 
ed noise with N(0: CT?, ), R ,  the denotes threshold amplitude, 
and p ,  represents sub-dR model order in the region m. 

The analysis will proceed by first splitting the video trace in I, 
B and P traces. Each will be modeled separately. Once the mod- 
el is determined, the time-series can be constructed following 
the GOP format. In the next section, the sub-AR model is char- 
acterized by estimating a:” and u(”(n>. A new algorithm for 
the TAR model construction is presented in Section 3.2. Criteria 
for the selection of R,, p m  and D are also introduced in this 
section. 

n-P, n - D  n Time 

Figure 3: The j t h  realization in the region m 

Figure 4 shows realizations of a random process according to 
their order of occurrence for the region m. The total number of 
realizations is N ,  and the model for each sequence uses p ,  
lagged values of x. In the bottom line of the figure, Xy’ denotes 
the ensemble average of the random process at each lag point i. 
The estimation of a?) proceeds by minimizing squared error 
between the estimated and measured value of x(n) .  This error 
J ,  in the sub-region m can be written as 

(3) 

Setting the partial derivative of J ,  in terms of af“ equal to zero 
yields 3.1 Characterization of the Sub-Region 

Each sub-region is characterized in terms of the coefficients 
and residual variance of the sub-AR process. The sub-region is 
classified by amplitude thresholds and a time-delay amplitude. 
Figure 3 illustrates j f h  classification in the sub-region m. Cur- 
rent Doint x(n)  is determined to be the ith realization for the 

(4) 

where x:) is a measured value from the pm lagged past data 
points at the occurrence j .  

where a(m)(k ,  i) is an ACF and written as 

where k and i denote different lags up to the order p,,,, and i y )  = xy) - Z:”. The function d m ) ( k ,  i) represents correlation 
of the lags i and k resulting from averaging over the realizations. 
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The TAR model will possess a different d m ) ( k ,  i) for each sub- 
region. Evaluating Eq.(5) for i from 1 to p ,  yields a matrix 
equation which can be used to estimate coefficients u y )  in the 
sub-region m as 

lag 
j-th 
event 

where a is a coefficient vector, [a]-' is the inverse of the ACF 
matrix, and Q(0, i) is an ACF vector. At the lag i = 0 in Eq.(5) 
the variance of the residual dm) is calculated as 

ti) 
Pm 

ci) 
. . .  X .  

ti) ci) 
. . .  x, X P  

Hence the sub-AR model is estimated using conditional correla- 
tion. The structure of the model varies in each sub-region m in 
accordance with the chosen thresholds and time-delay. In the 
next section, a method for selecting values for these parameters 
is discussed. 
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Figure 4: Total N ,  realizations in the region m 

3.2 Selection of the Best Model 
A method to determine the optimal R,, pm and D is needed 

to select the best TAR model among all possible cases. The 
classical method used in time-series studies uses the Akaike in- 
formation criteria (AIC) for the TAR model construction [17]. 
In addition to the AIC for modeling the full-motion video trace, 
a new model selection criterion is implemented to accurately 
evaluate the candidate TAR models. The best TAR model is se- 
lected by composing the parameters R, ,pm and D that yield the 
closest fit to the data. 

In the TAR model construction, effort is required to obtain the 
sub-AR models. The computational cost can be reduced by re- 
ducing the number of sub-regions evaluated. This can be done 
while retaining model accuracy. Given a set of K + 1 threshold 
amplitudes, an AR model is required in the interval R, and 
Rm+h with R, < Rm+h for h = 1.2, . . ,K -m. The number of 

AR model increases as the number of thresholds increase. Let 
the thresholds be defined as 

RK = P .  The P is a value greater than the peak rate of the 
MPEG video trace. The number of TAR model to be evaluated 
for k threshold-points between Ro and RK is (", ') for 
1 I k 5 K - 1. Hence the number of sub-AR model for the 
given k will be (", ')(K + 1). By summing all cases, the num- 
ber of sub-AR model will increase as O(2"). One can reduce 
the number of sub-AR models required by only evaluating rep- 
resentative models for the sub-regions once. Since the ampli- 
tude domains of some of sub-AR models are shared by the dif- 
ferent TAR models, the number of sub-AR model will be re- 
duced without repeated revaluation of sub-AR models in each 
TAR model. The sub-AR models to be evaluated are decreased 
to O(K2) [9] using representative sub-AR models. 

The conventional criterion for determining the best TAR mod- 
el is the AIC. In such a case, one must evaluate and compare 
the AIC from 0 ( 2 K )  candidates. Typically one would select the 
model having the minimum AIC. However the AIC is of limited 
use in choosing the best model for video traffic. Due to the 
large and intermittent fluctuations in the video traces, the vari- 
ance of the residual used in the AIC is not a reliable discrimina- 
tor. We will introduce sum of weighted variance as the criterion 
for selecting the best TAR model. Referring to the Gaussian 
noise term in Eq.(l), the residual of the TAR model can be rep- 
resented as a mixture of Gaussian distributed random variables 
having a stationary marginal distribution [19]. The weighting 
factor of the mixture is defined as 

Ro < R I  < . . < R, < . . . < Rm+h < ' ' < RK where Ro = O and 

for the sub-region m. The variance of region m is shown in 
Eq.(8). The weighted variance for a TAR model is obtained as 

for the delay value D .  The TAR model having the minimum 
TD(.)  is selected for the best model. The AIC is used for order 
selection in the sub-AR model. For the sub-region m, the AIC 
is defined as follows 

AZC(m, p )  = ( N ,  log(c~~"~2) + 2p)lN, (1 1) 

where p is the AR model order which is 1 5 p < pmax. The 
pmax denotes the maximum sub-model lag size. Selected model 
order is p m  for region m if the AZC(m, p,) has the minimum 
AIC among the pmax cases. Thus p ,  coefficients are used to 
calculate the roots of the polynomial as 

where z is transform variable. If roots of Eq.(12) satisfy 
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Ilx!m)l < 1 then the AR model is stable. Therefore a suitable 
TAR model uses only stable AR processes. 

Figure 5 illustrates the TAR model construction algorithm. 
Since the optimal thresholds are initially unknown, the his- 
togram and scatter diagram of MPEG trace are used to select the 
initial thresholds. High activity regions in the histogram or 
dense clusters in the scatter diagram can provide useful infor- 
mation for the initial threshold points. More elaborate search 
technique for determining the thresholds based on K-mean clus- 
tering and dynamic invariance have been used to analyze VBR 
trace[l5]. We found that the initial threshold selection using 
equally spaced amplitude intervals is reliable for the MPEG 
traces used here. 

The maximum D and pmax are set to 5 throughout this paper. 
Index counters used in the algorithm are p ,  it and D. The p and 
D index respectively the sub-AR model order and time-delay. 
Initial value of D is set to 1 and it increases until D reaches to 5.  
The combination of sub-AR models for a TD requires recursive 
function calls in the simulation program to efficiently retrieve 
the representative AR models [9]. The L(K) in the figure repre- 
sents the total number of representative sub-AR models in terms 
of the maximum threshold point K, and t is index counter for 
L(K). Thus L K) = O(K2). At each p iteration step x ( n )  is 
classified and ai 61, extimated in the given threshold interval, R ,  
and Rm+h. This portion of the algorithm takes the most time. 

I I I I 

I 

Obtain minimum AlC(m,pd 
and sub-model order p 1 Estimate ai”’ I l i  ? Calculate roots from Eq.(12) 

Compute the weighted 
variance for region m 

c I 

_____ 

< 

Compute AlC(m.p) 

Obtain the best TAR model in 
terms of the smallest T (.) 

Figure 5:  The TAR model construction algorithm 

4. Model for a Full-Motion Video Trace 
In this section, the TAR modeling procedure is applied to 

VBR MPEG video data shown in Figure 1. TAR models are 
constructed for each frame types of I, P and B. Composition 
process for the trace using the TAR models is implemented us- 

ing the GOP pattern. The number of data points for I-, P- and 
B-frames are 3334, 10000 and 26666 respectively. The initial 
threshold points are determined by equalIy spaced amplitude 
ranges. Thresholds for I-, P- and B-frame types are respectively 
selected as {0,50K ,60K, . . . ,200K, P I } ,  { 0,20K, 30K, . . . , 
120K, PPI and { 0 ,6K,  8K, .  . . ,40K, P B }  where P I ,  P ,  and 
P B  are values greater than the peak rates for each frame type. 
Using the algorithm developed in the previous section, the opti- 
mal TAR models were retained for each frame type and shown 
in Table 2. 

1.01 4 6 1.05 2 6 1.00 2 7 
1.05 4 7 1.10 4 9 1.01 2 7 
1.09 2 6 1.10 3 9 1.03 3 5 
1.12 4 8 1.10 2 5 1.04 4 5 

Table 2: The selected optimal TAR models for each frame type 

The five best TAR models for each frame type are shown in the 
table in terms of the normalized To. All TD’s are normalized by 
the minimum value of its class. For the best cases in each frame 
type, D was found equal to 2. The k represents the number of 
threshold between Ro and RK for each frame type. The thresh- 
olds for the best TAR models are obtained as 

R i )  = (0,60K, 70K,. . ., 100K, PI) 
Rg) = (0,20K, 30K,. . ., 90K, P p )  

(14) 
(15) 

and 

Some sub-region selections could not be evaluated due to the 
lack of a sufficient number of data points. The sub-AR models 
for the best TAR models in each frame type have sub-AR model 
orders as ( 1,4,1,4,1,4), ( 1,2,5,1,3,4,1,4,1 ), ( 1,1,4,1,5,1,5) for 
I, P and B respectively. From left to right, the sub-AR model or- 
ders are for intervals of lower thresholds to higher thresholds. 
In total 22 linear models are used for the MPEG full-motion 
video trace. 

A MPEG trace was generated using the best TAR models of 
each frame type. All sub-AR models in each frame type have 
residuals of Gaussian random variables with zero mean and 
standard deviation c:”. The residual series in Eq.(l) is ob- 
tained as 

where g(n) is Gaussian random process with N(0:l) and nLm) is 
calculated from Eq.(8). Note that different residual series are 
obtained for each frame type and for each sub-region. Finally, a 
synthesis video trace x ( n )  was attained after the composition 
process of frame types generated by the best TAR models. 
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Figure 6: Q-Q plot for actual vs. TAR traces 
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Figure 7: PDF for actual vs. TAR traces 

The Q-Q plot and PDF are used to compare the synthesized 
and actual traces. In the Q-Q plot comparison shown in Figure 
(6), deviation from the line is observed in the amplitude range 
greater than 99.99% of the highest amplitude in the actual trace. 
This range is corresponds to the I-frames occurring at peak bit- 
rates. PDF comparison shown in Figure 7 demonstrates accu- 
rate TAR modeling below a frame size of 150,000 bits. 

The TAR model captures the SRD in the local amplitude re- 
gions using low order AR models. Transition between the local 
regions depends on the thresholds and a time-delay amplitude. 
The x(n) composed using the TAR model captures the LRD of 
actual video trace. The deterministic composition of each frame 
class can allow the TAR model to capture the LRD of the 
MPEG stream. The ordering between frame classes ( I ,  P, B) 
has an impact on the LRD of the TAR model. Reference [lo] 
has shown that LRD in the MPEG trace is captured by the com- 
posite of each frame type that is modeled using independent ran- 
dom processes. Figure 8 shows the results of ACF comparison. 

5. Bit-Loss Rate Comparisons 
The leaky bucket algorithm [12,15] will be used to estimate 

bit-loss rates. The number of bits x(n) will be the input to the 
queue and the clock will be the frame counter. The maximum 
number of bits serviced during a frame period will be denoted 
by the constant drain rate. The drain-rate S can be retrieved di- 
viding by the time duration of each frame. In our case this will 
be 1/30 of a second. 
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Figure 8: ACF for actual and TAR realizations 

The maximum capacity of the buffer is M bits. The number of 
bits in the buffer at time n is equal to B(n) where the auxiliary 
function B(n) has an infinite capacity 

B(n)  = B(n - 1) + x(n) - min(B(n - l), S). (18) 
The bracket expression represents the number of bits serviced 
using a first-in-first-out ( F I F O )  discipline in the interval between 
n - 1 and n. When B(n) exceeds the buffer capacity M the 
number of bits exceeding the threshold are lost. The cumulative 
bit-loss L(n) at time n is given by the expression 

L(n) = L(n - 1) + max(0, B(n) - M ) .  (19) 
The fraction of bits that are lost in N frames is equal to 

N 

n=l 
E = L(N) /  x(n) .  (20) 

Two parameters will be used in the presentation of the results. 
The first will be the bucket size given in seconds which are 
equal to the MIS& where 6t is equal to 1/30. The second pa- 
rgneter is the ratio of the drain rate Sl6t and the average rate 
Sist. The average rate is a fixed parameter using a long-term 
average in the video sequence. 

Figure 9 shows the bit-loss rates as a function of the drain rate 
S/S and the buffer size MIS6t  in seconds. As the buffer size in- 
creases, the difference between the actual and synthesized traces 
increased. Figure 9 illustrates the results of the simulation for 
bucket sizes equal to 0.01, 0.5 and 2.0 seconds. To obtain 
these results 40,000 frame samples were used. The figure com- 
pares the loss rate in a leaky bucket queue for the actual and 
TAR traces. The horizontal axis reflects the Values of SIS and 
the vertical axis denotes the bit-loss rates. For bit-loss rates less 
than the TAR model underestimates the loss rates. 

The reason for disagreement is the improper modeling of out- 
liers which correspond to frames having large bit-counts. As we 
have seen in the Q-Q plot comparison between actual and TAR 
models, less than or equal to 0.01% of the jump arrivals in I 
frames was not properly modeled. 
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Figure 9: Bit-loss rate comparison 

We tested the outliers effect on the estimation of the bit-loss 
rates using the TAR model. Only 5 frames whose bits are 
greater than 189,232 in the actual trace belong to the range of 
greater than 99.99%. To test this outlier effect, we removed the 
5 frames whose bits are greater than 189,232 in the actual trace 
and measured the bit-loss rates using the actual and TAR traces 
with the bucket size 0.01 seconds. The result is presented in 
Figure 10. The bit-loss rates for the actual trace, the trace with 
the 5 frames removed, and the TAR trace are compared in the 
figure. A good agreement of bit-loss estimation is observed be- 
tween the trace with the 5 frames removed and TAR trace. 

In summary the TAR trace shows very accurate estimation for 
bit-loss rates for the entire range of drain rates and for large 
buffer sizes compared to the actual bit-loss rates without out- 
liers. The outliers in the actual trace hinders accurate modeling 
of the bit-loss rates below the range. These high jump bit 
rates occur very rarely in the actual trace (only 5 frames out of 
40,000 frames). It is realized as a difficult task to include these 
very rare events in any modeling approach. 

6. Conclusion 
The results presented in this paper demonstrated that the de- 

veloped TAR modeling process is effective in modeling VBR 
video traffic. The Q-Q plot and PDF were well matched to the 
actual VBR MPEG video trace. Bit-loss rates were accurately 
predicted using the trace composed from the TAR models of 
each frame type with the exception of the amplitude range be- 
longing to outliers. Unmodeled high rate frames, which were 
only 5 frames among 40,000 frames were shown to greatly im- 
pact the bit-loss at high drain rates. Due to these frames, errors 
in bit-loss estimates were observed at drain rates which are 
greater than six times average bit rate at a bucket size of 2 sec- 
onds. 

The method developed in this paper estimates accurate mod- 
eling parameters such as thresholds, a time-delay, and sub-AR 
model orders. The optimal thresholds and a time-delay point 
provide accurate models for each frame type. The model orders 
for stationary sub-AR models capture the SRD presented in the 
amplitude ranges. The switching between sub-regions is deter- 
ministic due to the thresholds and the time-delay point. 
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