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Preface

This manual contains the solutions to the theoretical exercises, simulation exercises, and
empirical exercises. The exercises have been gathered from many sources, some are even
taken from (published) research papers. The theoretical exercises have been carefully chosen
to reinforce concepts explained in the main text of the book or to develop and generalize them
in significant ways. With few exceptions, almost all theoretical exercises can be solved with
the knowledge of the book, and the background knowledge on linear time series methods,
matrix calculus and Markov chain methods. It should be noted, however, that in some
cases the mathematical proofs are lengthy and lack “elegance”. In my opinion, a long and
drawn-out solution can often provide more insight than a concise proof. In applied courses,
it may be preferable to skip much of the theoretical exercises entirely or cover them briefly.

The simulation exercises provide the reader with first-hand information on the behavior
and performance of some of the theoretical results. Most simulations are performed using
MATLAB and R computer code. For ease of access, I have included these codes in this
manual. They are also available at the website of the book. I apologize for any omissions
or errors in the codes. No endorsement or warranty, express or implied, should be drawn
from the listing and/or description of the supplemental code. The number of replications is
often fixed at 1,000, or 10,000. The sample size is taken in the range [100, 1,000] to allow for
finite-sample statistical inference. Note, that in many cases the computations can be time
demanding. The reader should keep in mind that round-off errors can occur – particularly
in those computer codes involving many loops. Furthermore, to make the book as usable as
possible, all simulation results are presented in the main text. This allows readers to focus
directly on the problem at hand.

The empirical exercises are on concrete applications with a wide variety of data sets and
topics. These exercises may help the reader to get a better understanding of specific nonlin-
ear features in the underlying DGP. In all cases some background information is provided in
the main text so that the general context of the data becomes clear. The solutions manual
contains computer codes which should make the reproduction of some presented results pos-
sible and also facilitate further applications of the described methods to appropriate other
data sets. The data and computer codes that are needed for the empirical exercises can be
found at two locations: http://www.jandegooijer.nl and http:extras.springer.com.

As the intended audience of the book is rather wide, it is difficult to judge the level and
background of the reader. Hence, I have not tried to provide a classification of the difficulty
of the exercises. Most of the figures in the main text and this solutions manual are obtained
using SigmaPlot.1 In some cases, however, they are created by the computer software package
EViews2 and the R graphics facility. All figures are included in the set of supplementary
material for this book. Of course, one can use any other graphics system for plotting data
and computational results.

Although this solutions manual has been carefully checked, errors, typos, and inconsistencies
in notation are bound to have crept into the text. Any readers spotting such errors, are
kindly requested to contact me. Also, I welcome comments about the book and suggestions
for improvement.

Amsterdam Jan G. De Gooijer

1SigmaPlot is a registered trademark of Systat Software, Inc.
2EViews (Econometric Views) is a software package for Windows, used mainly for econometric

time series analysis. It was developed by Quantitative Micro Software, now a part of IHS.

http:extras.springer.com
http://www.jandegooijer.nl


2 Solutions

Chapter 1

1.1 Suppose that X and Y are two random variables. The conditional mean of Y
given X = x is a function of x, so that the mean of the conditional expectation is
E[E(Y |X)] = E[Y ] (law of total expectation). Using this result, the mean of {Yt, t ∈ Z}
is

E[Yt] = E
[
E
[
Yt|(Yt−1, Yt−2, . . .)

]]
= E

[√
α0 + α1Y 2

t−1εt

]
= 0.

In the last step we used that σt =
√

α0 + α1Y 2
t−1 is a (nonlinear) function of (εt−1, εt−2,

. . .), which is independent of εt. The variance of {Yt, t ∈ Z} is

Var(Yt) = E[Y 2
t ] = E[E[Y 2

t |(Yt−1, Yt−2, . . .)]]

= E[(α0 + α1Y
2
t−1)ε

2
t ] = α0 + α1E[Y 2

t−1],

where we used that E[Y 2
t−1ε

2
t ] = E[Y 2

t−1]E[ε2
t ] since {Yt−1} is a (nonlinear) function of

(εt−1, εt−2, . . .). We conclude that

Var(Yt) = α0 + α1Var(Yt−1).

Iterative substitution of this result shows that Var(Yt) = α0/(1 − α1) for 0 < α1 < 1.
In order to prove that {Yt, t ∈ Z} is a white noise (WN) process we compute the
covariances E[YtYt−`] for ` ≥ 1.

E[YtYt−`] = E
[
E
[
YtYt−`|(Yt−1Yt−2, . . .)

]]
= E

[
Yt−`E

[
Yt|(Yt−1, Yt−2, . . .)

]]

= E
[
Yt−`

√
α0 + α1Y 2

t−1εt

]
= E

[
Yt−`

√
α0 + α1Y 2

t−1

]
E[εt] = 0.

So the process {Yt, t ∈ Z} is WN.
In order to prove that {Y 2

t , t ∈ Z} follows an AR(1) process, we first show that the
second moment of {Y 2

t } (that is, the fourth moment of {Yt, t ∈ Z}) is constant. The
fourth moment of {Yt, t ∈ Z} is

E[Y 4
t ] = E[E[Y 4

t |(Yt−1, Yt−2, . . .)]] = E[σ4
tE[ε4

t ]] = E[σ4
t ]E[ε4

t ]

= 3E[α2
0 + α2

1Y
4
t−1 + 2α0α1Y

2
t−1] = 3α2

0 + 6α0α1
α0

1 − α1
+ 3α2

1E[Y 4
t−1].

By iterative substitution it follows that the fourth moment is constant, provided that
1 − 3α2

1 > 0, that is, 3α2
1 < 1.

Now we prove that {Y 2
t , t ∈ Z} follows an AR(1) process. There holds

Y 2
t |(Yt−1, Yt−2, . . .) = σ2

t ε2
t = (α0 + α1Y

2
t−1)ε

2
t ,

which implies that

E[Y 2
t |(Yt−1, Yt−2, . . .)] = α0 + α1Y

2
t−1 = σ2

t .

Let ωt = Y 2
t − σ2

t , then we show as an auxiliary result that {ωt, t ∈ Z} is a WN
process. There holds

E[ωt] = E[E[ωt|(Yt−1, Yt−2, . . .)]] = E[E[Y 2
t |(Yt−1, Yt−2, . . .)] − σ2

t ]

= E[σ2
t − σ2

t ] = 0

E[ω2
t ] = E[E[Y 4

t |(Yt−1, Yt−2, . . .)] + σ4
t − 2σ2

tE[Y 2
t |(Yt−1, Yt−2, . . .)]]

= E[Y 4
t ] − E[σ4

t ] = E[Y 4
t ] − E[α2

0 + α2
1Y

4
t−1 + 2α0α1Y

2
t−1],



Chapter 1 3

which is constant because the second and fourth moments of {Yt, t ∈ Z} are constant.
The autocorrelations of the process {ωt} are zero because, for ` ≥ 1, ωt−` = Y 2

t−` −
σ2

t−` = Y 2
t−` − α0 − α1Y

2
t−`−1 is a function of (Yt−1, Yt−2, . . .) so that

E[ωtωt−`] = E[E[ωtωt−`|(Yt−1, Yt−2, . . .)]] = E[ωt−`E[ωt|(Yt−1, Yt−2, . . .)]]

= E[ωt−`(σ
2
t − σ2

t )] = 0.

The above results imply that Y 2
t = σ2

t + ωt = α0 + α1Y
2
t−1 + ωt where {ωt, t ∈ Z} is

a WN process. This shows that {Y 2
t , t ∈ Z} is an AR(1) process.

If, on the other hand, we assume that the rewrite of {Y 2
t , t ∈ Z} gives rise to an AR(1)

process, the above proofs can be skipped. In that case, we can express the ARCH(1)
process as

Y 2
t = σ2

t + Y 2
t − σ2

t

= α0 + α1Y
2
t−1 + σ2

t (ε2
t − 1)

= α0 + α1Y
2
t−1 + ωt,

where ωt = σ2
t (ε2

t − 1). Thus, we can think of an ARCH(1) process as an AR(1)
process for {Y 2

t , t ∈ Z} driven by a new noise process {ωt, t ∈ Z}. Let F t−1 be the
σ-field generated by Yt−1, Yt−2, . . .. It follows that E(ωt|F t−1) = E(σ2

t − σ2
t ) = 0.

Nevertheless, the process {ωt, t ∈ Z} does not have a constant conditional variance.
In particular,

E(ω2
t |F t−1) = E[σ4

t (ε2
t − 1)2|F t−1] = σ4

t Var(ε2
t ).

1.2 (a) The process is described by Yt = βYt−2εt−1 + εt, with {εt} an i.i.d. sequence
such that E(εt) = E(ε3

t ) = 0, E(ε2
t ) = σ2

ε , E(ε4
t ) < ∞, β2E(ε4

t ) < 1, ε0 = 0, and
Y−1 = Y0 = 0. As {Yt, t ∈ Z} is a nonlinear function of (εt, εt−1, . . .) it follows
that εt−1 and Yt−2 are independent so that

E(Yt) = βE(Yt−2εt−1) + E(εt) = βE(Yt−2)E(εt−1) = 0.

For given ` > 0, the covariance between Yt and Yt−` is therefore equal to

E(YtYt−`) = E[(βYt−2εt−1 + εt)(βYt−`−2εt−`−1 + εt−`)]

= E[β2εt−1εt−`−1Yt−2Yt−`−2 + βεt−1εt−`Yt−2

+ βεtεt−`−1Yt−`−2 + εtεt−`]

= β2E(εt−1)E(εt−`−1Yt−2Yt−`−2) + βE(εt−1)E(εt−`Yt−2)

+ βE(εt)E(εt−`−1Yt−`−2) + E(εt)E(εt−`)

= 0.

So, {Yt, t ∈ Z} is an uncorrelated process.
To investigate whether {Yt, t ∈ Z} is a weak WN process we need to check
whether it has a fixed variance (for t ≥ 1). There holds Y1 = βY−1ε0 + ε1 = ε1

and Y2 = βY0ε1 + ε2 = ε2, so that Var(Y1) = Var(Y2) = σ2
ε . Further

Var(Y3) = E(Y 2
3 ) = E(β2Y 2

1 ε2
2 + ε3ε2Y1 + ε2

3)

= β2σ2
εE(Y 2

1 ) + σ2
ε = β2σ4

ε + σ2
ε .

This is different from Var(Y2), so {Yt, t ∈ Z} is not a WN process.
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(b) The process {Y 2
t , t ∈ Z} is equal to

Y 2
t = β2Y 2

t−2ε
2
t−1 + ε2

t + εtεt−1Yt−2.

This process has expected values

σ2
t = E(Y 2

t ) = β2σ2
εσ2

t−2 + σ2
ε = σ2

ε(1 + β2σ2
t−2).

From part (a) we have σ2
1 = σ2

2 = σ2
ε , and for t ≥ 3 the variances σ2

t can be
computed recursively from the above formula. The covariance between Y 2

t and
Y 2

t−2 is given by

Cov(Y 2
t , Y 2

t−2) = E[(Y 2
t − σ2

t )(Y 2
t−2 − σ2

t−2)]

= E(Y 2
t Y 2

t−2) − σ2
t σ2

t−2

= E[(β2Y 2
t−2ε

2
t−1 + ε2

t + Yt−2εtεt−1)Y
2
t−2] − σ2

ε(1 + β2σ2
t−2)σ

2
t−2

= β2σ2
εE(Y 4

t−2) + σ2
εσ2

t−2 − σ2
ε(σ2

t−2 + β2σ4
t−2)

= β2σ2
ε(E(Y 4

t−2) − σ4
t−2).

Let Z = Y 2
t−2, then Y 4

t−2 = Z2 and σ4
t−2 =

(
E(Z)

)2
so that the covariance

between {Y 2
t } and {Y 2

t−2} is equal to β2σ2
εE
[(

Z − E(Z)
)2]

= β2σ2
εVar(Y 2

t−2).
Because Y 2

t−2 is a random variable with positive variance, we conclude that
Cov(Y 2

t , Y 2
t−2) > 0. This shows that {Y 2

t , t ∈ Z} is a correlated process.

As an illustration, Figure 1.1(a) displays a generated subdiagonal time series (see

Section 2.2 of the main text) of length T = 500, with β = 0.9 and {εt}
i.i.d.
∼ N (0, 1).

There are high amplitude oscillations, comparable to the extreme peaks in the plot
of the magnetic field data in Figure 1.3 of the main text. We see that the variance
of the process is time-dependent. The sample ACF of {Yt, t ∈ Z} in Figure 1.1(b)
supports the result of part (a), with most peaks lying within the 95% large sample
confidence interval ±1.96/

√
500 (blue medium dashed lines). However, as we see from

Figure 1.1(c), the sample ACF of {Y 2
t , t ∈ Z} indicates that the squared series is not

an uncorrelated process.

1.3 Assume that {Yt, t ∈ Z} is fourth-order stationary. The second and fourth moments
of an ARCH(1) process were computed in the solution of Exercise 1.1 with the results
that

E[Y 2
t ] =

α0

1 − α1
,

E[Y 4
t ] = 3α2

0 + 6α0α1
α0

1 − α1
+ 3α2

1E[Y 4
t−1] =

3α2
0(1 + α1)
1 − α1

+ 3α2
1E[Y 4

t−1].

By repetitive substitution of the lagged term E[Y 4
t−1] it follows that

E[Y 4
t ] =

3α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

,

provided that 1 − 3α2
1 > 0, that is, 0 < α1 < 1

3

√
3. Thus, γY (0) = Var(Yt) =

α0/(1 − α1), and γY (`) = 0 for ` 6= 0.
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Figure 1.1: (a) Realization of a subdiagonal BL(0, 0, 2, 1) process with β = 0.9; (b) Sample
ACF of {Yt}500

t=1 with 95% asymptotic confidence limits (blue medium dashed lines); (c)
Sample ACF of {Y 2

t }
500
t=1.

Now,

TCov
(
γ̂Y (h), γ̂Y (k)

)
=

1
T

T∑

t=1

T∑

s=1

E(YtYt+hYsYs+k) − TγY (h)γY (k)

=
∑

−T<i<T

(
1 −

|i|
T

)
σ(i), (0 ≤ h ≤ k < T ),

where

σ(i) = Cov(Y1Y1+h, Y1+iY1+i+k).

It is straightforward to see that

σ(0) = Var(Y1Y2) = E(Y 2
1 Y 2

2 ) = E[Y 2
1 (α0 + α1Y

2
1 )ε2

2]

= α0E(Y 2
1 ) + α1E(Y 4

1 )

=
α2

0(1 + 3α1)
(1 − α1)(1 − 3α2

1)
.
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Since σ(i) = Cov(Y1Y2, Y1+iY2+i) = 0 for i ≥ 1, we obtain

Tγ−2
Y (0)Var

(
γ̂Y (1)

)
=

(1 − α1)(1 + 3α1)
1 − 3α2

1

.

Hence, limT→∞ Tγ−2
Y (0)Var

(
γ̂Y (1)

)
increases as α1 increases from 0 to 1/

√
3 ≈ 0.5774.

This result depends simultaneously on α1 and E(Y 4
1 ).

Remark: As an additional example, consider the BL process Yt = βYt−2εt−1 + εt,

where {εt}
i.i.d.
∼ N (0, σ2

ε) with β2σ2
ε < 1. In that case we have (cf. Exercise 4.2)

σ(0) =
σ4

ε(1 + 2β2σ2
ε)

(1 − β2σ2
ε)2

, σ(1) = σ(2) = 0,

σ(3) =
β2σ6

ε

1 − β2σ2
ε

, σ(i) = 0 for i ≥ 4.

It is easy to see that limT→∞ Tγ−2
Y (0)Var

(
γ̂Y (1)

)
is greater than 2 as |β| ≥ 0.55 with

γY (0) = σ2
ε/(1 − β2σ2

ε).

1.4 (a) Let fX,Y (x, y), fX(x), and fY (y) denote the joint and marginal densities, re-
spectively. Using the fact that ∫∫ fX,Y (x, y)dxdy = ∫ fX(x)dx = ∫ fY (y)dy = 1,
rewrite (1.18) as

IKL(X,Y ) =
x {(

fX(x)fY (y) − fXY (x, y)
)
/fX,Y (x, y)

−log
(
1+
(
fX(x)fY (y)−fX,Y (x, y)

)
/fX,Y (x, y)

)}
fX,Y (x, y)dxdy

=
x

q(z)dxdy,

where z =
(
fX(x)fY (y) − fX,Y (x, y)

)
/fX,Y (x, y) and q(z) = z − log(1 + z) for

z > −1. By examining the first derivative of q(∙), it follows that q(∙) is non-
negative and is equal to 0 if and only if z = 0. As fX,Y (x, y) is non-negative
and ∫∫ fX,Y (x, y)dxdy = 1 then IKL(X,Y ) is non-negative and is 0 if and only
if fX,Y (x, y) = fX(x)fY (y), which is the necessary and sufficient condition for
X and Y to be independent.

The above results follow immediately from Theorem 3.1 of Kullback (1959, p.
14); see also Kullback et al. (1989). Or, since

E
(fX(x)fY (y)

fX,Y (x, y)

)
=
∫

fX,Y (x, y)
fX(x)fY (y)
fX,Y (x, y)

dxdy = 0,

apply Jensen’s inequality

E
(

log
fX(x)fY (y)
fX,Y (x, y)

)
≤ 0,

with equality iff P
( fX(x)fY (y)

fX,Y (x,y) = 1
)

= 1.

(b) Reformulate the problem as follows: fX,Y (x, y) = fX,Y (h(y), y) = g(y) for |x −
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y| < ε and 0 elsewhere (ε > 0). The marginal density for X is given by

fX(x) =
∫

fX,Y (x, y)dy

=
∫ x+ε

x−ε

g(y)dy

= G(x + ε) − G(x − ε),

where G(u) = ∫u
−∞ g(u)du. Note that

lim
ε→0

(
G(x + ε) − G(x − ε)

)
= lim

ε→0

∫ x+ε

x−ε

g(y)dy = 0.

Similarly, the marginal density for Y is given by

fY (y) =
∫ y+ε

y−ε

g(y)dx = 2εg(y).

Then

lim
ε→0

( fX,Y (x, y)
fX(x)fY (y)

)
= lim

ε→0

( 1

2ε
(
G(x + ε) − G(x − ε)

)
)
→ ∞,

which implies that IKL(X,Y ) → ∞ as ε → 0.

1.5 (a) It follows from the independence result that

E
(
μ̂ p

ν,Y μ̂
−νp/2
2,Y

)
E
(
μ̂

νp/2
2,Y

)
= E(μ̂ p

ν,Y ), (p = 1, 2, . . .),

so that the mean E(τ̂Y ) can be calculated from E(μ̂3,Y ) and E(μ̂ 3/2
2,Y ). It is well

known that for i.i.d. data, the mean of the third central moment is given by

E(μ̂3,Y ) =
(n − 1)(n − 2)

n2
μ3,Y .

Since μ3,Y = 0 for any symmetric distribution, we have E(τ̂Y ) = 0. Further, the
exact expression for the variance of τ̂Y is given by

Var(τ̂Y ) = Var
( (n − 2)
√

n(n − 1)

k3

k
3/2
2

)

=
(n − 2)2

n(n − 1)
6n(n − 1)

(n − 2)(n + 1)(n + 3)
=

6(n − 2)
(n + 1)(n + 3)

.

Similar as above the mean E(κ̂Y ) can be calculated from E(μ̂2
2,Y ) and E(μ̂4,Y ).

It is well known that Var(Y ) = μ2,Y /n. As given, and without loss of generality,
μY = 0. Then we have

E(μ̂2,Y ) = E
( 1

n

∑

i

(Yi −Y )2
)

=
1
n
E
(∑

i

Y 2
i

)
− E(Y

2
) =

n − 1
n

μ2,Y .

We further have

μ̂ 2
2,Y =

( 1
n

∑

i

Y 2
i

)2

− 2Y
2
( 1

n

∑

i

Y 2
i

)
+Y

4
.



8 Solutions

Then, with μY = 0, we have

1
n2
E
(∑

i

Y 2
i

)2

=
μ4,Y + (n − 1)μ2

2,Y

n
,

1
n3
E
[(∑

i

Yi

)2∑

i

Y 2
i

]
=

μ4,Y + (n − 1)μ2
2,Y

n2
,

E(Y
4
) =

μ4,Y + 3(n − 1)μ2
2,Y

n3
.

Hence, on combining, we have

E(μ̂ 2
2,Y ) = μ2

2,Y +
μ4,Y − 3μ2

2,Y

n
−

2μ4,Y − 5μ2
2,Y

n2
+

μ4,Y − 3μ2
2,Y

n3
.

Rewriting E(μ̂ 2
2,Y ), and using similar calculations for μ̂4,Y , we have

E(μ̂ 2
2,Y ) =

n − 1
n3

μ2
2,Y

(
(n − 1)

μ4,Y

μ2
2,Y

+ (n2 − 2n + 3)
)

E(μ̂4,Y ) =
n − 1
n3

μ2
2,Y

(
(n3 − 3n + 3)

μ4,Y

μ2
2,Y

+ 3(2n − 3)
)
.

Since μ4,Y /μ2
2,Y = 3 for a Gaussian distribution, we have the exact result

E(κ̂Y ) =
E(μ̂4,Y )
E(μ̂ 2

2,Y )
=

3n(n − 1)
n(n + 1)

.

Clearly, κ̂Y is affected with a positive bias of order n−1, while τ̂Y is unbiased.
The exact variance of κ̂Y follows directly from the expressions for k2, k4, and
Var(k4k

−2
2 ), i.e.,

Var(κ̂Y ) = Var
( (n − 1)(n − 2)(n − 3)k4

n2(n + 1)
(

n−1
n k2

)2 +
3n2(n − 1)
n2(n + 1)

)

= Var
( (n − 2)(n − 3)

(n − 1)(n + 1)
k4

k2
2

)

=
(n − 2)2(n − 3)2

(n − 1)2(n + 1)2
24n(n − 1)2

(n − 3)(n − 2)(n + 3)(n + 5)

=
24n(n − 2)(n − 3)

(n + 1)2(n + 3)(n + 5)
.

Note that for n → ∞ we have the asymptotic results E(τ̂Y ) → 0, Var(τ̂Y ) → 6,
E(κ̂Y ) → 3, and Var(κ̂Y ) → 24; confirming (1.5)

(b) Clearly, using the results in part (a), we can define an alternative (denoted by
the letter “a”) JB test statistic as

JBa =
τ̂ 2
Y

Var(τ̂Y )
+

(
κ̂Y − E(κ̂Y )

)2

Var(κ̂Y )
.

Urzúa (1996) shows that the test statistic JBa behaves much better for small-
and medium-sized samples than the JB test statistic.
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Figure 1.2: Climate change data set. Time plot of the δ13C series (top), and the reversed
data plot (bottom).

1.6 With both time series the number of recurrences are homogeneously spread over the
plot, which is typical of a stationary time series process. Both series display a quasi-
periodic pattern, as indicated by the long diagonal lines with different distances par-
allel to and on the main diagonal. Comparing, however, the off-diagonal structure of
the two series, we see that the evolution of states is quite different between the series.
There is no evidence for drifts in the series, such as a time trend. A DGP with a
slowly time-varying parameter, will result in a recurrence plot with white areas, or
blanks, in the upper-left and lower-right corners.

1.7 The time series plot in Figure 1.9(a) of the main text shows a stationary series with
some positive skewness. The directed scatter plot captures the positive skewness in the
data through the sojourns in top right and top left corners. Therefore, the time series
seems to be generated process by the stationary BL process (ii). In contrast, both
plots in Figure 1.9(b) show a realization of Yt = εt. This is a completely uncorrelated
time series and so the directed scatter plot should tend towards circular noise. The
time series wanders around a mean zero, with no real clustering of observations. The
time series plot in Figure 1.9(c) shows that this particular realization has a transitional
period with much larger variances than we see with a stationary process. The directed
scatter plot can be interpreted as an attractor located at (Yt, Yt−1) = (0, 0). The
nonstationary variance can be viewed as this attractor being “switched” on and off.

1.8 (a) Both plots are displayed in the first panel of Figure 1.2. Clearly, the mirror
image (bottom panel) of the δ13C series (Yt) is not similar to the original plot
(top panel). Hence, the time series {Yt} is not time-reversible. Note the large
glacial-interglacial amplitudes.

(b) The sample mean (sample standard deviation) of the series {Xt(`) = Yt − Yt−`}
(` = 1, 2) are given by −0.004 (0.304) and −0.011 (0.362). Figures 1.3(a) and
(b) show histograms of {Xt(`)} (` = 1, 2) with superimposed Gaussian distri-
butions using sample means and standard deviations of the two series. The
skewness (kurtosis) of Xt(1) and Xt(2) are, respectively, −0.213 (4.003) and
−0.164 (3.747). If the process {Yt, t ∈ Z} is time-reversible (TR), the distri-
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bution of the stochastic process {Xt(`) = Yt − Yt−`} is symmetric about zero;
see Chapter 8 of the main text for more details. Clearly, both histograms in-
dicate that this is indeed the case. Later, in Chapter 8, we will see that the
null hypothesis of TR for the climate change series δ13C (denoted by Yt) cannot
be rejected by a number of formal test statistics. The superimposed Gaussian
distributions indicate that both time series Xt(`) are normally distributed.

(c) Assuming independence, the JB test statistic has a p-value of 0.005 (JB = 10.634)
for the series {Xt(1)}215

t=1, and a p-value of 0.052 for the series {Xt(2)}214
t=1 (JB =

5.932). Hence, for {Xt(1)} normality is rejected at the conventional 5% signi-
ficance level while the series {Xt(2)} is a “borderline” case. The p-values of
the GJB test statistic for weakly dependent data confirm these observations,
i.e. p-value GJB = 0.005 for the {Xt(1)} series (GJB = 10.544) and p-value
GJB = 0.058 for the {Xt(2)} series (GJB = 5.710). These test results can be
computed by means of the following MATLAB code.

function[JB, pvalueJB, GJB, pvalueGJB] = JB_GJBtest(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 1.8(c)
% File: JB_GJBtest.m
%
% Performs a Jarque-Bera (JB) (independent time series data)
% and a GJB (weakly dependent time series data) test for normality.
%
% INPUT: data
% OUTPUT: JB, pvalueJB, GJB, pvalueGJB
%
% Reference:
% Jarque, C.M. and Bera, A.K. (1987).
% A test for normality of observations and regression residuals.
% International Statistical Review, 55(2), 163-172.
% DOI: 10.2307/1403192.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nr = length(data);
val = skewness(data)^2;
val = val + (1/4)*(kurtosis(data)-3)^2;
JB = (nr/6)* val;
pvalueJB = 1-chi2cdf(JB,2);
Z = data;
Z = Z(:)'-mean(Z);
y = filter(Z(nr:-1:1),1,Z);
acvf = y(nr:-1:1)/nr;
sum3 = 0;
sum4 = 0;
for i = 2:nr-1

sum3 = sum3 + 2*acvf(i)^3;
sum4 = sum4 + 2*acvf(i)^4;

end
F3 = acvf(1)^3+sum3;
F4 = acvf(1)^4+sum4;
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Figure 1.3: Climate change data set. Histograms of the {Xt(`) = Yt − Yt−`} time series
(` = 1, 2) where {Yt}216

t=1 denotes the δ13C time series.

Table 1.1: Climate change data set. Results of the Bai–Ng (2005) test statistics for the
time series {Xt(`) = Yt − Yt−`} (` = 1, 2); p-values in parentheses. Test statistics are
computed with a Parzen window, and {Yt}216

t=1 denotes the δ13C time series.

Test statistic π̂3,X (Skewness) π̂4,X (Kurtosis) π̂34,X (Normality)

Xt(1) -1.097 (0.864) 1.124 (0.131) 1.904 (0.386)
Xt(2) -0.759 (0.776) 1.223 (0.111) 3.884 (0.143)

m2 = moment(data,2);
m3 = moment(data,3)^2/F3;
GJB = m3 + (1/4)*(moment(data,4)-3*m2*m2)^2/F4;
GJB = (nr/6)*GJB;
pvalueGJB = 1-chi2cdf(GJB,2);

Remark: The exercise can be extended by computing the three tests statistics
proposed by Bai and Ng (2005) for weakly dependent data; see Section 1.3 of
the main text. One way to obtain these results is by using the MATLAB codes
given below. For the time series {Xt(`)} (` = 1, 2) the test results, with p-
values in parentheses, are summarized in Table 1.1. We see that in all cases the
corresponding null hypotheses cannot be rejected at the 5% nominal significance
level.

function[pi34,pvalue] = Normality_pi34(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 1.8(c)
% File: Normality_pi34.m
%
% Bai-Ng (JBES, 2005) Normality test statistics ``pi34''.
%
% INPUT: data
% OUTPUT: pi34, pvalue
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%
% Reference:
% Bai, J. and Ng, S. (2005).
% Tests for skewness, kurtosis, and normality for time series
% data.
% Journal of Business & Economic Statistics, 23(1), 49-60.
% DOI: 10.1198/073500104000000271.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xx = data;
z = xx-mean(xx);
n = length(xx);
m2 = sum(z.*z)/(n-1);
m3 = sum(z.*z.*z)/(n-1);
m4 = sum(z.*z.*z.*z)/(n-1);
a = zeros(2,4);
a(1,1) = -3*m2;
a(2,2) = -6*m2;
a(1,3) = 1.0;
a(2,4) = 1.0;
% Start computing test statistic for normality:
vv = [z,(z.*z-m2), z.*z.*z, (z.*z.*z.*z-3*m2^2)];
[nsize,nreg] = size(vv);

% Find the LS approximation solution with the QR decomposition
for i = 1:nreg

A = vv(2:nsize,i);
y = vv(1:nsize-1,i);
if issparse(A), R = qr(A);

else R = triu(qr(A));
end;
be(i) = R\(R'\(A'*y));
r = y-A*be(i);
rrr = r'*r/nsize;
se_b(i) = rrr;

end

beta = zeros(nreg,nreg);
bot = 0; top = 0;
for i = 1:nreg

top = top+4*(be(i)^2)*se_b(i)^2/(1-be(i))^8;
bot = bot+se_b(i)^2/((1-be(i))^4);

end
alpha = top/bot;
k = ceil(2.6614*(alpha*nsize)^(0.2));
if k > n/2; k = n/2;
end

% Variance-covariance matrix
vcv = vv'*vv/(n-1);
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for i = 1:k
x = i/k;
if abs(x) >= 0 && abs(x) <= .5; % Weights Parzen window

w = 1-6*(abs(x))^2+6*abs(x)^3;
else

w = 2*(1-abs(x))^3;
end;
cov = vv(i+1:nsize,:)'*vv(1:nsize-i,:)/(n-1);
vcv = vcv+w*cov;
cov = vv(1:nsize-i,:)'*vv(i+1:nsize,:)/(n-1);
vcv = vcv+w*cov;

end
d = inv(eye(nreg)-beta');
omega = d*vcv*d';
se = a*omega*a';
stat = [m3,(m4-3*m2^2)]';
pi34 = stat'*inv(se)*stat*n; % end computing normality test
pvalue = 1-chi2cdf(pi34,2);

function[pi3,pvalue] = Skewness_pi3(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 1.8(c)
% File: Skewness_pi3.m
% Bai-Ng (JBES, 2005) Skewness test statistics "pi3".
%
% INPUT: data
% OUTPUT: pi3, pvalue
%
% Reference:
% Bai, J. and Ng, S. (2005).
% Tests for skewness, kurtosis, and normality for time series
% data.
% Journal of Business & Economic Statistics, 23(1), 49-60.
% DOI: 10.1198/073500104000000271.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xx = data;
z = xx-mean(xx);
n = length(xx);
m2 = sum(z.*z)/(n-1);
m3 = sum(z.*z.*z)/(n-1);

% Start computing test statistic for skwewness
a = ones(2,1);
a(2,1) = -3*m2;
vv = [z.*z.*z, z];
[nsize,nreg] = size(vv);

beta = zeros(nreg,nreg);
% Find the LS approximation solution with the QR decomposition
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for i = 1:nreg
A = vv(2:nsize,i);
y = vv(1:nsize-1,i);
if issparse(A),R = qr(A);

else R = triu(qr(A));
end
b(i) = R\(R'\(A'*y));
r = y-A*b(i);
rrr = r'*r/nsize;
se_b(i) = rrr;

end

bot = 0; top = 0;
for i = 1:nreg

top = top+4*(b(i)^2)*se_b(i)^2/(1-b(i))^8;
bot = bot+se_b(i)^2/((1-b(i))^4);

end

alpha = top/bot;
k = ceil(2.6614*(alpha*nsize)^(0.2));
if k > n/2; k = n/2;
end

% Variance-covariance matrix
vcv = vv'*vv/(n-1);
for i = 1:k

x = i/k;
if abs(x) >= 0 && abs(x) <= .5; % Weights Parzen window

w = 1-6*(abs(x))^2+6*abs(x)^3;
else

w = 2*(1-abs(x))^3;
end
cov = vv(i+1:nsize,:)'*vv(1:nsize-i,:)/(n-1);
vcv = vcv+w*cov;
cov = vv(1:nsize-i,:)'*vv(i+1:nsize,:)/(n-1);
vcv = vcv+w*cov;

end
d = inv(eye(nreg)-beta');
omega = d*vcv*d';
se = sqrt(a'*omega*a)/sqrt(n);
pi3 = m3/se; % end computing test statistic for skewness
pvalue = 1-normcdf(pi3,0,1);

function[pi4,pvalue] = Kurtosis_pi4(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 1.8(c)
% File: Kurtosis_pi4.m
%
% Bai-Ng (JBES, 2005) Kurtosis test statistics ``pi4''.
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%
% INPUT: data
% OUTPUT: pi4, pvalue
%
% Reference:
% Bai, J. and Ng, S. (2005).
% Tests for skewness, kurtosis, and normality for time series
% data.
% Journal of Business & Economic Statistics, 23(1), 49-60.
% DOI: 10.1198/073500104000000271.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xx = data;
z = xx-mean(xx);
n = length(xx);
m2 = sum(z.*z)/(n-1);
m3 = sum(z.*z.*z)/(n-1);
m4 = sum(z.*z.*z.*z)/(n-1);
kappa = 3;
a = ones(3,1);
a(1,1) = 1;
a(2,1) = -4*m3;
a(3,1) = -2*m2*kappa;
vv = [(z.*z.*z.*z-m2^2),z,(z.*z-m2)];
[nsize,nreg] = size(vv);
beta = zeros(nreg,nreg);

% Find the LS approximation solution with the QR decomposition
for i = 1:nreg

A = vv(2:nsize,i);
y = vv(1:nsize-1,i);
if issparse(A),R = qr(A);

else R = triu(qr(A));
end
b(i) = R\(R'\(A'*y));
r = y-A*b(i);
rrr = r'*r/nsize;
se_b(i) = rrr;

end

bot = 0; top = 0;
for i = 1:nreg

top = top+4*(b(i)^2)*se_b(i)^2/(1-b(i))^8;
bot = bot+se_b(i)^2/((1-b(i))^4);

end

alpha = top/bot;
k = ceil(2.6614*(alpha*nsize)^(0.2));
if k > n/2; k = n/2;
end
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% Variance-covariance matrix
vcv = vv'*vv/(n-1);
for i = 1:k

x = i/k;
if abs(x) >= 0 && abs(x) <= .5; % Weights Parzen window

w = 1-6*(abs(x))^2+6*abs(x)^3;
else

w = 2*(1-abs(x))^3;
end
cov = vv(i+1:nsize,:)'*vv(1:nsize-i,:)/(n-1);
vcv = vcv+w*cov;
cov = vv(1:nsize-i,:)'*vv(i+1:nsize,:)/(n-1);
vcv = vcv+w*cov;

end
d = inv(eye(nreg)-beta');
omega = d*vcv*d';
se = sqrt(a'*omega*a/(m2^4))/sqrt(n);
stat3 = m4/(m2^2);
pi4 = (stat3-kappa)/se; % end computing kurtosis test
pvalue = 1-normcdf(pi4,0,1);

Chapter 2

2.1 Consider as an example the BL process in (2.18). It may be rewritten as

Yt = 0.99Yt−1 + ωt−2 − 0.5Yt−1ωt−2,

where ωt = εt+1. Thus, in terms of {ωt}, the model is redefined as a superdiagonal
model. Similarly, consider the BL process in (2.17). Rewriting it as

Yt = 0.99Yt−1 + ωt−3 − 0.5Yt−2ωt−3,

where ωt = εt+2. Clearly, by advancing εt, we obtain a superdiagonal BL model. Of
course, this operation is not physically realizable in real time.

The above result holds for general BL models. For a diagonal, taking L = 1, will result
in a superdiagonal BL model of order (p, q + 1, P,Q + 1) with the MA coefficients θj

replaced by θj+1, and the BL coefficients ψjv by ψj,v+1 in (2.12). For the subdiagonal
BL model, taking L = P , replacing θj by θj+P in (2.12), and ψjv by ψj,v+P yields a
superdiagonal BL model of order (p, q + P, P,Q + P ).

2.2 Write

εt =Yt−
p∑

i=1

{φi+ξi exp(−γY 2
t−1)}Yt−i−

q∑

j=1

{θj +τj exp(−γY 2
t−1)}εt−j .
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Recursive substitution gives

εt = Yt +
m∑

k=1

{ p∑

i=1

∑

Ck
r,i∈F1,i(k)

∑

u∈Ck
r,i

(−1)r+1×

r∏

s=1

Ai

(
t − 1 −

s−1∑

l=1

jl(u)
)
Bjl(u)

(
t − 1 −

s−1∑

l=1

jl(u)
)

+
∑

Ck
r ∈F2(k)

∑

u∈Ck
r

(−1)r
r∏

s=1

Bjs(u)

(
t − 1 −

s−1∑

l=1

jl(u)
)}

Yt−k

+
{ ∑

Cm
r ∈F2(m)

∑

u∈Cm
r

(−1)r
r∏

s=1

Bjs(u)

(
t − 1 −

s−1∑

l=1

jl(u)
)}

εt−m,

where m ≥ 1 is an integer. Here

Ai(t − k) = φi + ξi exp(−γY 2
t−k), Bj(t − k) = θj + τj exp(−γY 2

t−k),

Ck
r,i = {(j1, . . . , jr) ∈ Jr : i +

r∑

s=1

js = k},

Ck
r = {(j1, . . . , jr) ∈ Jr :

r∑

s=1

js = k},

F1,i(k) = {Ck
r,i : r ∈ Z+}, F2(k) = {Ck

r : r ∈ Z+}, J = {1, . . . , q} ⊂ Z+.

By a simple application of the strong law of large numbers and Jensen’s inequality,
it can be shown that the process is absolutely convergent almost surely, provided
max1≤j≤q(|θj | + |τj |) < 1. Moreover, the last term in curly brackets converges to
zero in probability. This result can be used to prove that the process {Yt, t ∈ Z} is
invertible; see also Section 3.5 of the main text.

2.3 (a) Consider first case (ii), with Yt > 0, so the system starts in the unstable regime.
Since Yt+1 = φ2Yt + εt+1, with φ2 ≤ −1, it follows that Yt+1 > 0 if εt+1 >
−φ2Yt > 0, which happens with probability pt+1 < (1/2), because {εt} has a
symmetric distribution around 0. Hence, the probability that the system stays
in the nonstationary regime for T periods is, because {εt} is i.i.d., pt+1 × pt+2 ×
∙ ∙ ∙ × pt+T < (1/2)T , which clearly goes to zero as T → ∞. Exactly the same
applies to case (iii): if Yt ≤ 0, then Yt+1 ≤ 0 only if εt+1 < 0 < φ1Yt, with
probability pt+1 < (1/2). So again, the probability that the system stays in the
nonstationary regime for T periods is bounded by (1/2)T .

(b) This is most easily seen if we start at Y1 = y � 0, so that {εt} is negligibly
small relative to φtYt−1, with φt = φ1I(Yt−1 ≤ 0) + φ2I(Yt−1 > 0). As long as
this is the case, the sign of {Yt} will be equal to the sign of φtYt−1, and because
φt < 0 ∀t this means that the process {Yt} will alternate between positive and
negative values, and hence φt will alternate between φ1 and φ2. This implies

Yt = φtφt−1Yt−2 + εt + φtεt−1

= φ1φ2Yt−2 + εt + εt−1

= Yt−2 + εt + φtεt−1,
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using the fact that φ1φ2 = 1. Thus, {Y1, Y3, Y5, . . .} will behave as a (positive-
valued) random walk, and similarly {Y2, Y4, Y6, . . .} will follow a negative-valued
random walk. So the process {Yt}t≥0 will alternate between these two random
walks, and hence is not stable.

(c) Define γ = max{|γ1|, |γ`|}, so that Yt−1 ≤ −γ implies regime 1. Further Yt−1 >
γ implies regime k, and the intermediate regimes occur within the band |Yt−1| ≤
γ. Whatever happens in those intermediate regimes, if they lead to unstable
behavior then eventually {Yt} will have to go outside the [−γ, γ] interval. If
|φ1| < 1 and |φk| < 1 (case (i)), then the process will mean-revert to zero,
and hence will be pushed back inside the [−γ, γ] interval eventually. So {Yt}
alternates (possibly unstable) inside the band with (stable) periods outside the
band, and hence will not explode or show trending behavior. If φk ≤ −1 and
φ1 ∈ ( 1

φ`
, 1) (case (ii)), then after fluctuating in the middle regimes, {Yt} will

always reach the stationary regime Yt ≤ −γ, possibly after first visiting the
explosive regime Yt > γ, but it will never stay there long, analogously to part
(a). So again, the process will be pushed back inside the band. The same occurs
in case (iii) (φ1 ≤ −1 and φk ∈ ( 1

φ1
, 1)).

2.4 Assuming 0 < φ < 1, the proofs follow the same steps as in the paper by Anděl et al.
(1984).

(a) Let C = [2(1−φ2)/π]1/2. Given f(y), the right-hand side (RHS) of the equation
can be written as

RHS =
1

√
2π

∫ ∞

0

exp
{
−

1
2
(y + φx)2

}
[f(x) + f(−x)]dx

=
1

√
2π

C

∫ ∞

0

exp
{
−

1
2
(y + φx)2

}
exp

{
−

1
2
(1 − φ2)x2

}
dx,

since Φ(−φx) + Φ(φx) = 1. Further, we have

RHS = C exp
{
−

1
2
(1 − φ2)y2

} 1
√

2π

∫ ∞

0

exp{−
1
2
(x + φy)2}dx

= C exp
{
−

1
2
(1 − φ2)

}
Φ(−φy) = f(y).

Obviously f(y) > 0, and
∫ ∞

−∞
f(y)dy = 2

√
(1 − φ2)

∫ ∞

−∞
ϕ
(√

1 − φ2y
)
Φ(−φy)dy

with ϕ(∙) the density of a standard normal distribution. Using Φ(−φy) = 1 −
Φ(φy) we have

I ≡
∫ ∞

−∞
f(y)dy = 2

√
1 − φ2

{∫ ∞

−∞
ϕ
(√

1 − φ2y2
)
dy

−
∫ ∞

−∞
ϕ
(√

1 − φ2y2
)
Φ(φy)dy

}

= 2
∫ ∞

−∞
ϕ(u)du − I,

or 2I = 2 as required. Therefore f(y) is a valid pdf.
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Remark 1: Denote C(a, b) the Cauchy distribution with density

g(x) = π−1b{b2 + (x − a)2}, b > 0, −∞ < x < ∞.

Assume {εt, t ∈ Z} is a strict WN process with Cauchy distribution C(0, 1).
Then it can be proved (Anděl and Bartoň, 1986) that the stationary distribution
of the SETAR(2; 1, 1) process is given by

h(y) =
2A

π2

{−[y log A−2(1 + y2) + (A2 − 1 + y2) arctan(y)]
4A2y2 + (1 − A2 + y2)2

+
(1 + A)π

(2A)[(1 + A)2 + y2]

}
,

where A = φ/(1 − φ).

Remark 2: Clearly, even for a very simple SETAR model the correspondence
between the distribution of {εt, t ∈ Z} and {Yt, t ∈ Z} is so complicated that only
exceptionally we can expect to find explicit results. In fact, for many (non)linear
time series processes the distribution function F (∙) of {Yt, t ∈ Z} is not specified
completely and only the moments μk,Y =

∫
yrdF (y) (k = 1, . . . , n) are known.

Following Anděl (1987) and Anděl and Garrido (1988) we may, however, look
for a distribution G(∙) which satisfies this condition. Write sk = E(εk

t ), with
s0 = 1. If n = 2r (an even number) and there are no other restrictions on G(∙),
then the question of the existence of G(∙) is answered by the following assertion
(Krein and Nudelman, 1977, Chapter 5, Section 5).

A sequence {sk}2r
k=0 is a system of moments on (−∞,∞) if and only if the matrix

A = (aij) (0 ≤ i, j ≤ r) with aij = si+j is positive semidefinite.

After calculating s1, . . . , sn, it is necessary to check whether they are moments.
For a general even number of moments the following classical assertion (Krein
and Nudelman, 1977, Chapter 5, Section 5, Ex. 1.4) can be used.

Let s1, . . . , s2r be such numbers that the matrix A = (si+j)r
i,j=0 is positive semi-

definite. Let ξ be an arbitrary real number. Then the polynomial

Q(z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

s0 s1 . . . sr−1 1 1
s1 s2 . . . sr ξ z
...

...
...

...
...

sr+1 sr+2 . . . s2r ξr+1 zr+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

has r + 1 different real roots z1, . . . , zr+1. (One of them is ξ). The system of
linear equations

zk
1p1 + ∙ ∙ ∙ + zk

r+1pr+1 = sk (∗)

for k = 0, . . . , r has a unique solution p1, . . . , pr+1. This solution is non-negative
and satisfies (∗) also for k = r + 1, . . . , 2r.

Consider, as an example, the threshold model

Yt =

{
φ1Yt−1 + εt if Yt−1 ≤ c,
φ2Yt−1 + εt if Yt−1 > c.
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Suppose we wish to get a stationary distribution function F (∙) of {Yt, t ∈ Z}.
So we need to choose the distribution G(∙) of {εt, t ∈ Z}.

Let p = P(Yt ≤ c), q = P(Yt > c), wk = E(Y k
t |Yt−1 ≤ c), and w∗

k = E(Y k
t |Yt−1 >

c). Then we have the following condition for the moments:

μk,Y =
k∑

i=0

(
k

i

)
(
φi

1wip + φi
2w

∗
i q
)
sk−i. (∗∗)

For the special case that we wish Yt∼N (0, 1) and c = 0, we have

p = q = 0.5, μ2r−1,Y = 0, μ2r,Y = 2−r(2r)!/r!,

w∗
r = 2r/2π−1/2Γ(

r + 1
2

), wr = (−1)rw∗
r (r = 1, 2, . . .).

Using (∗∗), the first four moments are given by

μ1,Y = 0 = s1 + (φ2 − φ1)(2π)−1/2,

μ2,Y = 1 = s2 + (φ2 − φ1)(2/π)1/2s1 + (φ2
2 + φ2

1)/2,

μ3,Y = 0 = s3 + 3(φ2 − φ1)(2π)−1/2s2 +
3
2
(φ2

2 + φ2
1)s1 + (φ3

2 − φ3
1)(2/π)1/2

μ4,Y = 3 = s4 + 2(φ2 − φ1)(2/π)1/2s3 + 3(φ2
2 + φ2

1)s2

+ 4(φ4
2 − φ3

1)(2/π)1/2s1 + 3(φ4
2 + φ4

1)/2.

The solution is

s1 = (2π)−1/2(φ1 − φ2),

s2 = 1 + π−1(φ1 − φ2)
2 − (φ2

1 + φ2
2)/2,

s3 = (2π)−1/2(φ1 − φ2)[3 + (3 − π)(φ1 − φ2)
2/π,

s4 = 3[1 + 2(φ1 − φ2)
2/π − (φ2

1 + φ2
2)] + 3φ2

1φ
2
2

+ (φ1 − φ2)
2(φ2

1 + 4φ1φ2 + φ2
2)/π + 2(3 − π)(φ1 − φ2)

4/π2.

It is easy to extend the above procedure to first-order SETAR models with
multiple regimes.

(b) Making use of the hint, the first moment is readily obtained:

E(Yt) = μY =
∫ ∞

−∞
yf(y)dy = 2

√
(1 − φ2)

∫ ∞

−∞
yϕ
(√

1 − φ2)y
)
Φ(−φy)dy

= −(2/π)1/2φ(1 − φ2)−1/2.

For the second moment we have

E(Y 2
t ) =

∫ ∞

−∞
y2f(y)dy = 2

√
1 − φ2

∫ ∞

−∞
y2ϕ

(√
1 − φ2y

)
Φ(−φy)dy

= 1/(1 − φ2).

Clearly, the expression for Var(Yt) follows directly from the first two moments.

Note: The above formulas for f(y), E(Yt), and Var(Yt) remain valid for the case
|φ| < 1 and the SETAR model is driven by a WN process {εt} with symmetrical
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density. In fact, Chan and Tong (1986) and Tong (1990, p. 141) show that if g(∙) is a
stationary density function of the AR(1) process ξt = φξt−1 + εt. Then the stationary
density function f(y) of the SETAR process specified in Exercise 2.4 is given by

f(y) = 2
∫ ∞

0

g(x)f(y − φx)dx,

= 2
∫ ∞

0

(1 − φ2

2π

)1/2

exp
{
−

1
2
(1 − φ2)x2

}
×

1
√

2π
exp

{
−

1
2
(y − φx)2

}
dx.

Direct integration leads to the stationary marginal pdf f(y), and we can see that f(y)
and the expressions for the mean and variance are valid for |φ| < 1.

Remark 3: For r = 3 and r = 4, the central moments μr,Y = E[(Yt − μY )r] of the
specified SETAR(2; 1, 1) process can be derived in the same way as above; see Anděl
et al. (1984). In particular,

μ3,Y = μ3 − 3μ2μ1 + 2(μ1)
3, and μ4,Y = μ4 − 4μ3μ1 + 6μ2(μ1)

2 − 3(μ1)
4,

where (see, e.g., Gradshteyn and Ryzhik (1994, Sections 6.28–6.31))

μ1 ≡ μY and μr ≡ E(Y r
t ) =

∫ ∞

−∞
yrf(y)dy = φ−r−1[2(1 − φ2)/π]1/2Jr,

with

Jn =
∫ ∞

−∞
xn exp(−

1
2
kx2)Φ(−x)dx=

n − 1
k

Jn−2 −
μn−1

k(k + 1)n/2
(Re k > 0, n = 0, 1, . . .).

From the above expression for Jn, the following special cases follow directly

J0 =
( π

2k

)1/2
, J1 =

−1
k(k + 1)1/2

, J2 = k−1J0,

J3 =
(2
k

+
1

k + 1

)
J1, and J4 =

(3
k

)
J2.

Moreover, after some algebra, it can be shown that the covariance at lag 1 is given by

γY (1) = E(YtYt+1) =
φ

1 − φ2
+

2φ2

π(1 − φ2)1/2
−

2φ

π(1 − φ2)
arctan

(
√

1 − φ2

φ2

)
.

Note, in Anděl et al. (1984, p. 96) the parameter φ is missing in the numerator of the
third term in the expression for γY (1). Given the above results, and assuming station-
arity, the correlation coefficient at lag 1 is given by ρY (1) = (γY (1) − μ2

Y )/Var(Yt).

2.5 (a) It is easy to see that

E(εt ≥ 0) = 1/
√

2π, E(εt < 0) = −1/
√

2π,

E(εiε
+
j ) = E(εiε

−
j ) =

{
0 if i 6= j,
1/2 if i = j,

E(ε+
i ε+

j ) = E(ε−i ε−j ) =

{
1/2π if i 6= j,
1/2 if i = j,

E(ε−i ε+
j ) =

{
−1/2π if i 6= j,
0 if i = j.
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Then we have

μY = E(Yt) = E(εt + θ+ε+
t−1 + θ−ε−t−1) =

θ+ − θ−
√

2π
,

Var(Yt) = 1 +
(
(θ+)2 + (θ−)2

)1
2
− μ2

Y .

(b) The marginal pdf of {Yt, t ∈ Z} is given by

f(y) =
1

√
2π

∫ ∞

0

exp
{
−

1
2
(y − μ+)2

}
ϕ(u)du

+
1

√
2π

∫ 0

−∞
exp

{
−

1
2
(y − μ−)2

}
ϕ(u)du.

On substitution, we get

f(y) =
1

{1 + (θ+)2}1/2
√

2π
exp

{ −y2

2{1 + (θ+)2}

}
Φ
( θ+y

{1 + (θ+)2}

)

+
1

{1 + (θ−)2}1/2
√

2π
exp

{ −y2

2{1 + (θ−)2}

}
Φ
( −θ−y

{1 + (θ−)2}

)
.

On specializing f(y) to the asMA(1) model with θ+ = −θ− ≡ θ, we get

f(y) =
2

(1 + θ2)1/2
√

2π
exp

{ −y2

2(1 + θ2)

}
Φ
( −θy

(1 + θ2)1/2

)
.

Setting φ = θ/(1 + θ2)1/2, the above pdf is identical to the marginal density
function of the SETAR(2; 1, 1) process

Yt =

{
φYt−1 + εt if Yt−1 ≤ 0,
−φYt−1 + εt if Yt−1 > 0,

see Exercise 2.4 of the main text. This establishes a duality between both models.

2.6 (a) Recall the basic statistical theory about the relationship between moments and
cumulants. In particular, the 3rd-order cumulant of a strictly stationary process
{Yt, t ∈ Z} with mean μY is defined as

γY (`1, `2)=E[(Yt − μY )(Yt+`1 − μY )(Yt+`2 − μY )]

=E(YtYt+`1Yt+`2)−μY [E(YtYt+`1)+E(YtYt+`2)+E(Yt+`1Yt+`2)]

+ 2μ3
Y .

The full structure of γY (`1, `2) may be obtained by computing the following
special cases:

γY (0, 0) = μY,3 − 3μ2,Y μY + 2μ3
Y

γY (−`,−`) = E(YtY
2
t−`) − 2μY E(YtYt−`) − μY μ2,Y + 2μ3

Y

γY (0,−`) = E(Y 2
t Yt−`) − μY

(
2E(YtYt−`) + μ2,Y

)
+ 2μ3

Y

γY (−`,−` − s) = E(YtYt−`Yt−`−s)

− μY

(
E(YtYt−`) + E(YtYt−`−s) + E(YtYt−s)

)
+ 2μ3

Y ,
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where μs,Y = E(Y s
t ) (s ≥ 2). All the 3rd-order cumulants can be obtained using

the following symmetry relations (see, e.g., Subba Rao and Gabr (1984, p. 59))

γY (0, `) = γY (`, 0) = γY (−`,−`)

γY (`, `) = γY (−`, 0) = γY (0,−`)

γY (s, s + `) = γY (s + `, s) = γY (−s, `) = γY (`,−s)

= γY (−s − `,−`) = γY (−`,−` − s).

Time-reversibility may be determined by verifying γY (−`1,−`2) = γY (`1, `2).
The NEAR(1) process {Yt, t ∈ Z} is distributed as an exponential process with
marginal moments μY = 1, μ2,Y = 2, and μ3,Y = 6. Moreover, it is easy to see
that

E(εt) = με = p + (1 − p)b, E(ε2
t ) = μ2,ε = 2[p + (1 − p)b2],

where b = (1 − α)β. Then it is straightforward to derive

E(Yt, Yt−`) =

{
αβμ2,Y + με ` = 1,
αβE(YtYt−`+1) + με ` ≥ 2,

E(YtY
2
t−`) =

{
αβμ3,Y + 2με ` = 1,
αβE(YtY

2
t−`+1) + 2με ` ≥ 2,

E(Y 2
t Yt−`) =

{
αβ2μ3,Y + 2αβμ2,Y με + μ2,ε ` = 1,
αβ2E(Y 2

t Yt−`+1) + 2αβμεE(YtYt−`+1) + μ2,ε ` ≥ 2.

Defining the following constants

ξβ(`) =
1 − β`

1 − β
, ξαβ(`) =

1 − (αβ)`

1 − αβ
, ξαβ2(`) =

1 − (αβ2)`

1 − αβ2
,

we obtain the following closed form representation for the expectations

E(YtYt−`) = 2(αβ)` + μεξαβ(`)

E(YtY
2
t−`) = 6(αβ)` + 2μεξαβ(`)

E(Y 2
t Yt−`) = 6(αβ2)` + 4(αβ)`μεξβ(`) + μ2,εξαβ2(`)

+ 2μ2
εαβ

1
1 − αβ

(
ξαβ2(`) − (αβ)`−1ξβ(`)

)
.

The cumulant structure is given by

γY (0, 0) = 2, γY (−`,−`) = 2(αβ)`,

γY (0,−`) = 6(αβ)` + 4(αβ)`[μεξβ(`) − 1]

+ 2με[μεαβ
1

1 − αβ
{ξαβ2(`) − (αβ)`−1ξβ(`)} − ξαβ(`)]

+ μ2,εξαβ2(`).

So, γY (−`,−`) 6= γY (0,−`) = γY (`, `), implying that the process is not time-
reversible.

(b) Similar to (2.51), we have

E(YtY
2
t−`) =

E(Yt)E(Y α`+2
t )

E(Y α`

t )
, E(Y 2

t Yt−`) =
E(Y 2

t )E(Y 2α`+1
t )

E(Y 2α`

t )
.
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The 3rd-order cumulant structure is given by

γY (0, 0) = 2, γY (−`,−`) =
μY

μα`,Y

(
μα`+2,Y − 2μα`+1,Y

)

γY (0,−`) =
μ2,Y μ2α`+1,Y

μ2α`,Y

− 2
μY μα`+1,Y

μα`,Y

,

where

μα,Y = Γ(1 + α) α ∈ (0, 1), μY = 1, and μ2,Y = 2.

Clearly, γY (−`,−`) 6= γY (0,−`) = γY (`, `), implying that the process is not
time-reversible.

2.7 Two-state Markov chain St ∈ {1, 2} with switching probabilities 0 < w1 < 1 and
0 < w2 < 1.

(a) For the stationary probabilities we have to solve

π1 = (1 − w1)π1 + w2π2

π2 = w1π1 + (1 − w2)π2

π1 + π2 = 1.

The first two equations both lead to w1π1 = w2π2. Combining this with the
third equation w1π1 = w2(1 − π1). Hence π1 = w2/(w1 + w2), which implies
π2 = 1 − π1 = w1/(w1 + w2). This implies μ = E(St) = 1 × π1 + 2 × π2 =
(2w1 + w2)/(w1 + w2).

(b) If w1 + w2 = 1, define p = w1 = 1 − w2. We have

P(St = 2|St−1 = 1) = 1 − P(St = 1|St−1 = 1) = w1 = p,

P(St = 2|St−1 = 2) = 1 − P(St = 1|St−1 = 2) = 1 − w2 = p.

Hence, P(St = j|St−i = i) is independent of i, and so {St−1} is an i.i.d. sequence
with P(St−1 = 1) = 1 − P(St − 1 = 0) = p, i.e., an i.i.d. Bernoulli sequence.

(c) We have E(St|St−1, St−2, . . .) = E(St|St−i) because of the Markov property, and

E(St|St−1 = 1) = (1 − w1) + 2w1 = 1 + w1,

E(St|St−1 = 2) = w2 + 2(1 − w2) = 2 − w2.

The proposed expression

E(St|St−1) = μ(1 − φ) + φSt−1 = 2w1 + w2 + (1 − w1 − w2)St−1

gives E(St|St−1 = 1) = 1 + w1 and E(St|St−1 = 2) = 2 − w2, which agrees with
the conditional expectation given above, and hence confirms the autoregressive
structure E(St|St−1, St−2, . . .) = μ(1 − φ) + φSt−1. Note that |φ| < 1, so the
model is stationary, because w1 ∈ (0, 1) and w2 ∈ (0, 1).

2.8 Skewness in the TGARCH(1,1) model rt = Yt = σtεt, with σ2
t = α0+

(
α1+γ1I(Yt−1 <

0)
)
Y 2

t−1 + β1σ
2
t−1.

(a) E(Y 3
t ) = E(ε3

t σ
3
t ) = E(εt)E(σ3

t ) = 0, because {εt} and {σt} are independent
processes and E(ε3

t ) = 0. Hence, τY = E(Y 3
t )/σ2

Y = 0.
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(b) For the two-period return rt[2] = Yt + Yt−1, we find

E(rt[2]) = E
(
(Yt + Yt−1)

3
)

= E(Y 3
t + 3Y 2

t Yt−1 + 3YtY
2
t−1 + Y 3

t−1)

= 3E(Y 2
t Yt−1),

because E(Y 3
t ) = E(Y 3

t−1) = 0, and E(YtY
2
t−1) = E(εtσtY

2
t−1) = E(εt)E(σtY

2
t−1) =

0. Next,

E(Y 2
t Yt−1) = E(ε2

t )E(σ2
t Yt−1)

= E
(
(α0 + (α1 + γ1I(Yt−1 < 0)Y 2

t−1 + β1σ
2
t−1)Yt−1

)

= E
(
γ1I(Yt−1 < 0)Y 3

t−1

)
,

because E(Yt−1) = 0, E(Y 3
t−1) = 0, and E(σ2

t−1Yt−1) = E(σ3
t−1)E(εt−1) = 0.

Next,

E
(
I(Yt−1 < 0)Y 3

t−1

)
= E

(
I(εt−1 < 0)ε3

t−1σ
3
t−1

)
=
∫ 0

−∞
ε3dF (ε)E(σ3

t−1) < 0,

where F (ε) is the distribution function of {εt}. It is not easy to find an explicit
expression for E(σ3

t−1), but we know it is positive. Combining terms gives

E
(
(rt[2])3

)
= 3γ1

∫ 0

−∞
ε3dF (ε)E(σ3

t−1).

We also have Var(rt[2]) = E(rt[2]2) = E(Y 2
t ) + E(Y 2

t−1) + 2E(YtYt−1) = 2σ2
Y ,

where σ2
Y = α0/(1 − α1 − 1

2γ1 − β1) with P(Yt−1 < 0) = 1/2, such that

τ(rt[2]) =
E(rt[2]3)

Var(rt[2])3/2
= 3γ1

∫ 0

−∞ ε3dF (ε)E(σ3
t−1)

2
√

2σ3
Y

,

so τ(rt[2]) < 0 if γ1 > 0.

2.9 Using the R-nnet package, the results in Table 2.1 of the main text can be computed
as follows.

#######################################################################
# R code: Exercise 2.9
# File: R-script-AR-NN.r
#
# Estimating and forecasting AR-NN(k;p,...,p) models
# with p = 7 and 8, and k = 0,1,...,5 (number of hidden units).
#
# Note: The results need not be exactly
# as shown in the main text since they depend heavily on the
# initial weights chosen by random in the R-function nnet.
#######################################################################
library(nnet)

# load the data into workspace
eeg <- read.table("c:\\...\\eeg.dat")
mod <- list()
# Last H = 80 observations are used for forecasting
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hor <- 80
set.seed(1)

n <- length (eeg[,1])
nhor <- n-hor
n1 <- n-1-hor
n2 <- n-2-hor
n3 <- n-3-hor
n4 <- n-4-hor
n5 <- n-5-hor
n6 <- n-6-hor
n7 <- n-7-hor
n8 <- n-8-hor

for (p in (7:8)){
pp <- p+1

# Range of initial random weights [-rang1,rang1]
rang1 <- 1/max(eeg)
y <- eeg[pp:nhor,1]

# Obtain the input variables eeg(t-1),...,eeg(t-p))
if (p == 7){

nr <- n7
p1 <- p-1
p2 <- p-2
p3 <- p-3
p4 <- p-4
p5 <- p-5
p6 <- p-6
eeg.x <- cbind(eeg[p:n1,1],eeg[p1:n2,1],eeg[p2:n3,1],eeg[p3:n4,1],

eeg[p4:n5,1],eeg[p5:n6,1],eeg[p6:n7,1])
}

if (p == 8){
nr <- n8
p1 <- p-1
p2 <- p-2
p3 <- p-3
p4 <- p-4
p5 <- p-5
p6 <- p-6
p7 <- p-7
eeg.x <- cbind(eeg[p:n1,1],eeg[p1:n2,1],eeg[p2:n3,1],eeg[p3:n4,1],

eeg[p4:n5,1],eeg[p5:n6,1],eeg[p6:n7,1],eeg[p7:n8,1])
}

for (k in (0:5)){
# Build a p-k-1 network with skip layer connections and linear inputs

eeg.nn <- nnet(eeg.x,y,size=k,linout=T,skip=T,maxit=10000,decay=1e-2,
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reltol=1e-7,abstol=1e-7,rang=rang1)
npar <- p+1+k*(p+2)

# Sum of squared residuals
sse <- sum((y-predict(eeg.nn,eeg.x))^2)

# Estimate of the residual variance
resvar <- sse/nr

# AIC and SBIC
aic <- nr*log(sse) + 2*npar
bic <- nr*log(sse) + npar*log(nr)

# Setup the input variables in the forecasting subsample
if (p == 7){
eeg.p <- cbind(eeg[551:630,1],eeg[550:629,1],eeg[549:628,1],

eeg[548:627,1],eeg[547:626,1],eeg[546:625,1],eeg[545:624,1])
}
if (p == 8){
eeg.p <- cbind(eeg[551:630,1],eeg[550:629,1],eeg[549:628,1],

eeg[548:627,1],eeg[547:626,1],eeg[546:625,1],eeg[545:624,1],
eeg[544:623,1])

}
# Compute the forecasts

yh <- predict(eeg.nn,eeg.p)
# The observed values the forecasting subsample

yo <- eeg[552:n,1]
# Compute and print the sum of squares of forecast errors

ssfe <- sum((yo-yh)^2)
rootmse <- sqrt(ssfe/80)
mae <- sum(abs(yo-yh))/80

# Print summary results
stats <- cbind(p,k,npar,resvar,aic,bic,rootmse,mae)
print(stats)

} # end loop for k
} # end loop for p

The results in Table 2.2 of the main text can be computed with the following set of
commands.

> p=8
> k=4
> nr <- n8
> p1 <- p-1
> p2 <- p-2
> p3 <- p-3
> p4 <- p-4
> p5 <- p-5
> p6 <- p-6
> p7 <- p-7
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> eeg.x <- cbind(eeg[p:n1,1],eeg[p1:n2,1],eeg[p2:n3,1],eeg[p3:n4,1],
+ eeg[p4:n5,1],eeg[p5:n6,1],eeg[p6:n7,1],eeg[p7:n8,1])
> eeg.nn <- nnet(eeg.x,y,size=k,linout=T,skip=T,maxit=10000,decay=1e-2,
+ reltol=1e-7,abstol=1e-7,rang=rang1)
> summary(eeg.nn)

2.10 Using the R-tsDyn package the estimation results for the SETAR(2; 2, 2) model with
delay d = 2 can be obtained as follows.
(a)

##################################################################
# R code: Exercise 2.10(a)
# File: SETAR_estimation.r
#
# SETAR(2;2,2) model estimation.
##################################################################
library(tsDyn)
mod <- list()
data <- ts(USunemplmnt_logistic)
mod[["setar"]]<- setar(data,m=3,mL=2,mH=2,thDelay =2)
summary(mod[["setar"]])

The output is given by:

Non linear autoregressive model

SETAR model (2 regimes)
Coefficients:
Low regime:

phiL.1 phiL.2 const L
1.6062678 -0.6830262 -0.2215264

High regime:
phiH.1 phiH.2 const H

1.655925 -0.746213 -0.219406

Threshold:
-Variable: Z(t) = + (0) X(t)+ (0)X(t-1)+ (1)X(t-2)
-Value: -2.537
Proportion of points in low regime: 86.35%

High regime: 13.65%

Residuals:
Min 1Q Median 3Q Max

-0.236202 -0.032783 -0.005116 0.028719 0.216038

Fit:
residuals variance = 0.003094, AIC = -1442, MAPE = 1.431%

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)
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const L -0.221526 0.046361 -4.7782 3.043e-06 ***
phiL.1 1.606268 0.049435 32.4925 < 2.2e-16 ***
phiL.2 -0.683026 0.050753 -13.4579 < 2.2e-16 ***
const H -0.219406 0.169932 -1.2911 0.1978662
phiH.1 1.655925 0.174492 9.4900 < 2.2e-16 ***
phiH.2 -0.746213 0.192578 -3.8749 0.0001369 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold
Variable: Z(t) = + (0) X(t) + (0) X(t-1)+ (1) X(t-2)

Value: -2.537

Intuitively, the SETAR(2; 2, 2) model says that the dynamics of unemployment
act differently depending on the magnitude of the recent change in the unemploy-
ment rate. In the upper (first) regime, the negative intercept indicates a down-
ward trend. The roots of the characteristic equation z2 − 1.606z + 0.683026 = 0
are complex (0.8031±0.1949i), which indicate possible cyclical behavior in {Yt}.
The negative intercept in the lower (second) regime is not significantly different
from zero. The roots of z2 − 1.656z + 0.746 = 0 are complex (0.8280± 0.2464i),
which is another indication for cyclical behavior in the series. Note, however,
that using the model option selectSETAR(data, m= ..., thDelay=...) with vari-
ous combinations of the arguments m and thDelay does not result in a unique
threshold value th on the basis of the minimum value of the pooled-AIC criterion.

(b) The estimation results can be obtained, using the R-CSETAR set of functions
available at the website of this book. For ease of reference, we reproduce these
functions below.

##################################################################
# R code: Exercise 2.10(b)
# File: CSETAR_estimation.r
#
# Set of R functions for estimating CSETAR models, programmed by
# K.S. Chan.
#
# Reference:
# Chan, K.S. and Tsay, R.S. (1998).
# Limiting properties of the least squares estimator of a
# continuous threshold autoregressive model.
# Biometrika, 85(2), 413-426.
# DOI: 10.1093/biomet/85.2.413.
##################################################################
"create.x" <- function(x,start,p,d){

# Create the matrix [x(t-1),..x(t-p),x(t-d)];
# no x(t-d) between x(t-1) and x(t-p).
# This function is called by main

n <- length(x)
xy <- NULL
for(i in (1:p))
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xy <- cbind(xy, x[(start - i):(n - i)])
xy <- xy[, - d]
cbind(xy, x[(start - d):(n - d)])

}
"derivative" <- function(x, r, is.constant.jump = F){

m <- dim(x)[2]
z <- x[, m]
res <- cbind(x[,- m], pmin(z-r, 0),pmax(z-r,0))
if(is.constant.jump) {

I <- z <= r
res <- cbind(x[,c(-1,- m)],I,I * z,(1 - I),(1 - I)*z)

}
res

}
"formh" <- function(x,theta,resi,covariate = NULL){
# This function is a "work horse" of main

theta1 <- rev(theta)
r <- theta1[1]
phid.minus <- theta1[3]
phid.plus <- theta1[2]
m <- dim(x)[2]
z <- x[, m]
I <- z <= r
work <- cbind(1,x[,- m],pmin(z - r,0),pmax(z - r, 0),-(

phid.minus * I+phid.plus*(1 - I)),covariate)
apply(work, 2, mult, resi)

}
"is.missing" <- function(x){

any(x == "NA")
}
"mult" <- function(a, b){

a * b
}
"main" <- function(y,p,d,start=p+1,a=0.25,b=0.75,Print=T,series.name=

"", is.grid.search=T,npts.grid=100,standard=F,covariate=NULL,
covariate.name=NULL){

######################################################################
# This function fits a continuous TAR model with
# delay d and order p in both regimes.
# It uses the method of grid search to minimize the
# sum of squared one-step ahead error.
# INPUT:
# y = time series
# start = starting value
# p = order
# d = delay
# a = beginning fraction of obs over which the search is done
# (default=.25)
# b = ending " " (default=.75)
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# npts.grid = no of grid points (default=100)
# standard = logical variable of whether or not to standardize
# the data (default=F)
# covariate = matrix of covariates. (default=none)
# covariate.name = labels for the covariates
#
# OUTPUT:
# thd = estimated thd
# ls = the ls object of the regression fit with the threshold
# fixed at thd
# coef = estimated coefficients=(phi0,phi1,...,phip,phid-,phid+,r)
# cov = var-cov matrix for coef
# sigma1 = noise std dev in the lower regime
# sigma2 = noise std dev in the upper regime
######################################################################

AIC.linear <- NA
lab <- c("constant", paste("lag", 1:p, sep = ""))
lab <- lab[ -(d + 1)]
lab <- c(lab,paste(paste("lag",d,sep=""),c("-","+"),sep=""),

"threshold", covariate.name)
y1 <- y[y != "NA"]
if(standard)

y <- (y - mean(y1))/var(y1)^0.5
n <- length(y1)
old.cand <- sort(y1[(start:n)-d])
n.cand <- length(old.cand)
lbound <- sum(old.cand == min(old.cand))
ubound <- sum(old.cand == max(old.cand))
s <- (a1<-max((2*p+1),lbound+p+1,round(n.cand*a))):(b1<-

min(n.cand -(2*p+1),n.cand-ubound-(p+1),round(
n.cand*b)))

cand <- old.cand[s]
if(is.grid.search)

cand <- old.cand[a1]+((old.cand[b1]-old.cand[a1])*(0:
npts.grid))/npts.grid

c1 <- cand[1]
frac1 <- floor(sum(old.cand <= c1)/n.cand*100)
c2 <- cand[cand[length(cand)]]
frac2 <- ceiling(sum(old.cand <= c2)/n.cand*100)
mse <- 0*cand
x <- create.x(y,start,p,d)
y2 <- y[ -(1:p)]

if(is.matrix(covariate))
covariate <- covariate[ -(1:p),]
else covariate <- covariate[ -(1:p)]
i <- 1
for(r in cand) {

xwork <- cbind(derivative(x,r),covariate)
select <- !apply(cbind(xwork, y2),1,is.missing)
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mse[i] <- ls.diag(lsfit(xwork[select,],y2[select]))$std.dev
i <- i + 1

}
thd <- cand[sortindex <- sort.list(mse)[1]]
xwork <- cbind(derivative(x, thd), covariate)
select <- !apply(cbind(xwork, y2), 1, is.missing)
ls <- lsfit(xwork[select, ], y2[select])
theta <- c(ls$coef, thd)
n <- sum(select)
n1 <- n - p
if(is.matrix(covariate))

covariate1 <- covariate[select, ]
else covariate1 <- covariate[select]

V <- formh(x[select, ,drop=F],theta,ls$residuals,covariate=
covariate1)

V <- t(V) %*% V/n
U <- formh(x[select, ,drop=F],theta,1,covariate=covariate1)
U <- t(U) %*% U/n
Uinv <- solve(U)
cov <- Uinv %*% V %*% Uinv/n
coef <- c(ls$coef, thd)
z <- x[select, dim(x)[2]]
I <- z <= thd
sigma1 <- sum(ls$residuals^2 * I)/(sum(I))
sigma1 <- sigma1^0.5
sigma2 <- sum(ls$residuals^2 * (1 - I))/sum(1 - I)
sigma2 <- sigma2^0.5
res <- ls$residuals
std.res <- ((res * I)/sigma1) + ((res * (1 - I))/sigma2)
fit <- y2[select] - res
std.err <- diag(cov)^0.5
coef <- c(ls$coef, thd)
names(coef) <- lab
dimnames(cov) <- list(lab, lab)
names(std.err) <- lab
coef.stder <- signif(rbind(coef, std.err), 4)
dimnames(coef.stder) <- list(c("coef", "std. err."), lab)
if(Print) {

n <- length(y1)
if(series.name != "")
cat(" \n\n The time series being analyzed is ",series.name,"\n")
cat(" CLS estimation of \n continuous TAR model with p =\n",

round(p, 3), " d = ", round(d, 3), "\n")
cat("\n threshold searched from the ", signif(a1/n * 100,3),

" percentile to the ", signif(b1/n * 100, 3),
" percentile\n")

if(is.grid.search)
cat(" using a grid search of ", npts.grid + 1,

" points evenly distributed\n over the range (",
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signif(range(cand), 4), ")\n")
cat("\n The fitted model is: \n")
print(coef.stder)
cat("\n")
cat(" RMS for 1st (<= threshold) \n and 2nd regime resp. are = ",
signif(sigma1^2, 4), ",", signif(sigma2^2, 4), "\n")
cat("\n")
cat(" no. of observations in 1st regime (<= threshold)",

" and 2nd regime\n resp. are = ", sum(I),
",", sum(1 - I), "\n")

cat(" The threshold estimate is approximately the ",signif(sum(
old.cand <= thd)/n.cand * 100, 3),

" percentile of all threshold data\n")
cat("\n (In the case that the threshold estimate occurs at a tie,",

"\n the above percentile may appear to lie outside ",
"\n the search range for the threshold.)\n\n")

}
invisible(list(thd=thd,ls=ls,cand=cand,mse=mse,cov=cov,

coef=coef,sigma1=sigma1,sigma2=sigma2,std.err=
std.err,std.res=std.res,n1=sum(I),n2=sum(1 - I),lab
= list(c("coef","std.err."),lab),fit=fit))

}

Next, the CLS estimates can be obtained by the following set of commands:

> USunemplmnt <- read.table("C:/.../USunemplmnt_logistic.dat",
quote="\"")

> data <- ts(USunemplmnt)
> main(data,2,2)

The output is given by:

CLS estimation of continuous TAR model with p = 2 d = 2
threshold searched from the 24.6 percentile to the 74.6
percentile using a grid search of 101 points evenly distributed
over the range ( -3.047 -2.639 )

The fitted model is:
constant lag1 lag2- lag2+ threshold

coef 1.5750 1.60300 -0.67220 -0.60330 -2.6390
std. err. 0.2202 0.06676 0.07882 0.07446 0.1813

RMS for 1st (<= threshold)
and 2nd regime resp. are = 0.00364 , 0.001793

no. of observations in 1st regime (<= threshold) and 2nd regime
resp. are = 188 , 62
The threshold estimate is approximately the 75.2
percentile of all threshold data
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(In the case that the threshold estimate occurs at a tie,
the above percentile may appear to lie outside
the search range for the threshold.)

Comparing with the SETAR model in part (a), we observe that the two models
are similar, i.e. the lag-1 and lag-2 coefficients in part (a) are somewhat close to
each other, which is indicative of using a CSETAR model. Also the threshold
estimates are close to each other, and significantly different from zero at the 5%
nominal level. Clearly, the CSETAR model needs fewer parameters than the
SETAR model to describe the DGP underlying the series.

(c) Using the R-MSwM package a two-state MS–AR model can be fitted to the data
set USunemplmnt−matrix.dat. First, however, we fit an AR(2) model to the data.

##################################################################
# R code: Exercise 2.10(c)
# File: MS-AR.r
##################################################################
# Optional: rename the time series variables in the 250 * 3 matrix
# as follows:
renamed_data <- with(USunemplmnt_matrix, data.frame(y=V1,y_1=V2,

y_2=V3))
#-----------------------------------------------------------------
library(MSwM)
mod = lm(y~y_1+y_2,renamed_data) # A linear AR(2) model
summary(mod)

The output is given by:

Call:
lm(formula = y ~ y_1 + y_2, data = renamed_data)

Residuals:
Min 1Q Median 3Q Max

-0.225616 -0.032498 -0.003171 0.030594 0.230100

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.14974 0.03531 -4.24 3.16e-05 ***
y_1 1.60480 0.04805 33.40 < 2e-16 ***
y_2 -0.65797 0.04826 -13.63 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.05697 on 247 degrees of freedom
Multiple R-squared: 0.9634, Adjusted R-squared: 0.9631
F-statistic: 3254 on 2 and 247 DF, p-value: < 2.2e-16

The diagnostics indicate that the linear model fits the data well. Diagnostic
plots, using the function plot(mod), seem to confirm this observation. Next, we
try to improve on these results by fitting a two-state MS–AR(2) model to the
data. To indicate that all the parameters can be different in both periods, the
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switching parameter (sw) is set to a vector with four components with value
equal to TRUE; see, e.g., the paper by J.A. Sanchez–Espigares and A. Lopez–
Moreno (2014) entitled “MSwM examples”, and available at: http://cran.r-
project.org/web/packages/MSwM/vignettes/examples.pdf.

> mod.mswm=msmFit(mod,k=2,sw=c(T,T,T,T),control=list(parallel=F))
> summary(mod.mswm)

The output is given by:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T, T),
control = list(parallel = F))

AIC BIC logLik
-805.4394 -751.1819 408.7197

Coefficients:

Regime 1
---------

Estimate Std. Error t value Pr(>|t|)
(Intercept)(S) -0.0455 0.0330 -1.3788 0.168
y_1(S) 1.3010 0.0382 34.0576 < 2.2e-16 ***
y_2(S) -0.3130 0.0396 -7.9040 2.665e-15 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.02688384
Multiple R-squared: 0.989

Standardized Residuals:
Min Q1 Med Q3

-0.053144586 -0.012171286 0.000389544 0.011634994
Max

0.057245018

Regime 2
---------

Estimate Std. Error t value Pr(>|t|)
(Intercept)(S) -0.2196 0.0694 -3.1643 0.001555 **
y_1(S) 1.6580 0.0971 17.0752 < 2.2e-16 ***
y_2(S) -0.7386 0.0999 -7.3934 1.432e-13 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0770452
Multiple R-squared: 0.9501

http://cran.r-project.org/web/packages/MSwM/vignettes/examples.pdf
http://cran.r-project.org/web/packages/MSwM/vignettes/examples.pdf
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Table 2.1: Structure of the NeSETAR regimes for the Jökulsá Eystri river time series.

i First-stage Second-stage (j)

2 Qt−2 ≤ 92 m3/s Tt ≤ −2
◦
C −2

◦
C < Tt ≤ 1.8

◦
C Tt > 1.8

◦
C

(low temp.) (moderate temp.) (high temp.)
(regime 1) (regime 2) (regime 3)

1 Qt−2 > 92 m3/s ∀ Tt (regime 4)

Standardized Residuals:
Min Q1 Med Q3

-0.256000432 -0.011531917 -0.001652446 0.010458948
Max

0.196921581

Transition probabilities:
Regime 1 Regime 2

Regime 1 0.93203735 0.08772958
Regime 2 0.06796265 0.91227042

The model implies that in the second regime (second state), the unemployment
rate has a downward trend with an AR(2) polynomial possessing complex char-
acteristic roots. This feature of the model is similar to the first regime of the
SETAR model. In the first regime (first state) the characteristic roots are 0.9824
and 0.3186, which differs from the second regime of the SETAR model and the
linear AR(2) model, both model-fits having complex characteristic roots. In
both regimes the multiple R-squared has high values. The transition probabilit-
ies matrix has high values which indicates that it is difficult to change from one
regime to the other.

Using the function plotDiag(mod.mswm), we see (Figure 2.1) that the sample
ACF and sample PACF of the residuals do not differ from a WN process at the
5% nominal significance level. This is not the case for the squared residuals.
The functions plotProb(mod.mswm,which=2) and plotProb(mod.mswm,which=1)
provide the two graphs in Figure 2.2. Both graphs show that the periods for
each regime have been detected perfectly.

2.11 (a) Table 2.1 shows the structure of the fitted NeSETAR model. It is clear that
k1 = 2, `1,2 = 1, `2,2 = 3, d1 = 2, d2 = 0, r̂1 = 92 m3/s, r̂2,1 = −2

◦
C, and

r̂2,2 = 1.8
◦
C.

The model reveals that temperature plays a dominant role in modulating the
riverflow dynamics. When the temperature is below −2

◦
C, riverflow is not signi-

ficantly affected by temperature or precipitation (regime 1). On the other hand,
both current temperature, 3-days earlier temperature, and one-days earlier pre-
cipitation have effect on current-days riverflow when the temperature is higher
than 1.8

◦
C (regime 3). However, comparing regime 2 with regime 3, the lags

and size of effect depend on whether the temperature is slightly above freezing
or high. The reverse influence of temperature 3 days earlier in regime 3 on river-
flow is understandable, because the effect of snow melting lasts only for a short
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Figure 2.1: Jökulsá Eystri river time series. Sample ACF and sample PACF of the
residuals of the fitted MS–AR model using R-plotDiag(mod.mswm).

period. In regime 4, Qt strongly depends on current, one- and three days ago
temperature, and on the level of the previous riverflow Qt−1. This appears to
be reasonable. One possible reason for the heavy dependence on temperature is
that the Jökulsá Eystri river basin has a glacier: as a result the effect of Tt goes
beyond producing spring snowmelt.

(b) To estimate the second stage threshold parameter, say r̂2,1 = −2, we use the
following R code.

##################################################################
# R code: Exercise 2.11(b) first part
# File: Friedman's_supersmoother.r
#
# Friedman's supersmoother. This code is a modified version of
# S-Plus code provided by Tess Astatkie.
# INPUT: jokulsa.dat (1,086 * 32) matrix.
# OUTPUT: Plot of Friedman's supersmoother: Q on AvT.
##################################################################
x <- jokulsa
x[,33] <- (x[,24]+x[,25]+x[,26])/3 # Average temperature (AvT)
names(x) <- c("Q","Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8",

"Q9","Q10","P","P1","P2","P3","P4","P5","P6","P7",
"P8","P9","P10","Tm","T1","T2","T3","T4","T5","T6",
"T7","T8","T9","AvT")

x <- x[x[,3] <= 92, ]
x1x <- supsmu(x[,33],x[,1])$x # Friedman's supersmoother
x1y <- supsmu(x[,33],x[,1])$y
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Figure 2.2: Jökulsá Eystri river time series. Upper panel: response variable indicating
which observations are associated to regime 1 using R function plotProb(mod.mswm,which=1.
Lower panel: filtered and smoothed probabilities for both regimes in the MSM–AR model using
R function plotProb(mod.mswm,which=1).

plot(x1x,x1y)

Figure 2.3 shows the supersmoother estimates of Qt (x1y) onTt (x1x) conditional
on Qt−2 ≤ 92 m3/s. We see an impression of three linear pieces, an almost
horizontal linear function until approximately Tt = −2

◦
C, a strong positive

linear function between −2
◦
C < Tt ≤ 2

◦
C, and a mildly positive linear function

beyond Tt = 2
◦
C.

Clearly, some fine-tuning of the threshold parameter estimate r̂2,1 is needed.
Bacon and Watts (1971) suggest that estimation of parameters in a two-regime
threshold model can be done by reducing the problem to estimation of the para-
meters in a reparameterized piecewise linear regression with smooth transition
at r. The two-regime model, with threshold r and {ui} following an AR(1)
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Figure 2.3: Jökulsá Eystri river time series. Supersmoother of Qt on Tt (Qt−2 ≤ 92
m3/s).

process, is given by

yi =

{
θ0 + θ1xi + ui if x ≤ r,
(θ0 + θ1r) + θ2(x − r) + ui if x > r,

(∗)

where ui = φui−1 + εi and with {εi}
i.i.d.
∼ N (0, σ2

ε). The reparameterized model
is given by

yi = φyi−1 + β0(1 − φ) + β1[(xi − r) − φ(xi−1 − r)]

+ β2{[((xi − r)2 + [δ/2]2)1/2]

− φ[((xi−1 − r)2 + [δ/2]2)1/2]} + εi, (∗∗)

where the parameters in (∗∗) are related to those in (∗) by

β0 = θ0 + θ1r, β1 = (θ0 + θ1)/2, β2 = (θ2 − θ1)/2,

with δ a smoothing parameter, playing the same role as γ in an LSTAR model.
Next, we obtain a nonlinear least squares estimate of r by using the following R
code.

##################################################################
# R code: Exercise 2.11(b) second part
# File: Piecewise_linear_regression.r
#
# INPUT: x1x and x1y from first part.
# OUTPUT: Parameter estimates of reparameterized linear regression
# model with smooth transition at "r".
##################################################################
n1 <- length(x1x)
smooa <- data.frame(x1y[2:n1],x1y[1:(n1-1)],x1x[2:n1],

x1x[1:(n1-1)])
names(smooa) <- c("Yt", "Y1t", "Xt", "X1t")
thr2a.fit <- nls(Yt~phi*Y1t+BO*(1-phi)+B1*((Xt-Xo)-

phi*(X1t-Xo))+ B2*(((Xt-Xo)^2+(delta^2)/4)^0.5-
phi*((X1t-Xo)^2+(delta^2)/4)^0.5),smooa,
start = list(phi = 0.9,BO = 25,B1 = 2,B2 = 2,
Xo = -1.8, delta = 1), trace=T) # Rough parameter estimates
list(summary(thr2a.fit)$parameters)
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The output is given by:

[[1]]
Estimate Std. Error t value Pr(>|t|)

phi 0.9978826 0.001087632 917.481872 0.000000e+00
BO 30.4508672 2.129407502 14.300160 2.194523e-40
B1 1.6190465 0.027196238 59.532001 4.240483e-261
B2 1.8660249 0.025803978 72.315397 1.418707e-307
Xo -1.9614243 0.066831527 -29.348788 4.715549e-120
delta 0.3289523 0.203380583 1.617422 1.062869e-01

(c) After forming subset data sets, one may use a stepwise regression procedure
to find a preliminary model. Next, if the best delays have been identified and
they are physically meaningful, one may fit a final NeSETAR model to the data.
Below is the relevant R code to reassemble the series in the original time order.
It lists the actual flow values, the fitted values, the residuals, and the normalized
residuals. Finally, the code provides plots of the sample ACF and sample PACF;
see Figure 2.4.

##################################################################
# R code: Exercise 2.11(c)
# File: NeSETAR_estimation.r
#
# INPUT: jokulsa.dat (1,086 * 32) matrix.
# OUTPUT: Parameter estimates of NeSETAR model and plots of
# sample ACF and sample PACF of the normalized residuals.
##################################################################
x <- jokulsa # Reintroduce the original data set
x[,33] <- (x[,24]+x[,25]+x[,26])/3 # Average temperature (AvT)
x[,34] <- x[,12]^2 # Quadratic terms
x[,35] <- x[,13]^2
x[,36] <- x[,14]^2
x[,37] <- x[,15]^2
x[,38] <- x[,16]^2
x[,39] <- x[,17]^2
x[,40] <- x[,18]^2
x[,41] <- x[,19]^2
names(x) <- c("Q","Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8",

"Q9","Q10","P","P1","P2","P3","P4","P5","P6","P7",
"P8","P9","P10","Tm","T1","T2","T3","T4","T5","T6",
"T7","T8","T9","AvT","Ps","P1s","P2s","P3s","P4s",
"P5s","P6s","P7s")

x1 <- x[x[,3] <= 92 & x[,33] <=-2, ]
fit1 <- lm(Q ~ Q1, x1)
x2 <- x[x[,3] <= 92 & x[,33] > -2 & x[,33] <= 1.8, ]
fit2 <- lm(Q ~ Q1 + Q2 + P1 + Tm - 1, x2)
x3 <- x[x[,3] <= 92 & x[,33] > 1.8, ]
fit3 <- lm(Q ~ Q1 + Q2 + P1s + Tm + T3 -1, x3)
x4 <- x[x[,3] > 92, ]
fit4 <- lm(Q ~ Q1 + Tm + T1 + T3, x4)
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res <- c(1:1085)
for(i in 1:length (resid(fit1))) {

res[as.integer(names(resid(fit1)[i]))] <- resid(fit1)[i]}
for(i in 1:length (resid(fit2))) {

res[as.integer(names(resid(fit2)[i]))] <- resid(fit2)[i]}
for(i in 1:length (resid(fit3))) {

res[as.integer(names(resid(fit3)[i]))] <- resid(fit3)[i]}
for(i in 1:length (resid(fit4))) {

res[as.integer(names(resid(fit4)[i]))] <- resid(fit4)[i]}
nres <- c(1:185)
for(i in 1:length (resid(fit1))) {

nres[as.integer(names(resid(fit1)[i]))] <-
resid(fit1)[i]/sqrt(1.6)}

for(i in 1:length (resid(fit2))) {
nres[as.integer(names(resid(fit2)[i]))] <-
resid(fit2)[i]/sqrt(20.3)}

for(i in 1:length (resid(fit3))) {
nres[as.integer(names(resid(fit3)[i]))] <-
resid(fit3)[i]/sqrt(49)}

for(i in 1:length (resid(fit4))) {
nres[as.integer(names(resid(fit4)[i]))] <-
resid(fit4)[i]/sqrt(146)}

Normresid.Jokulsa <- nres
Residuals.Jokulsa <- res
Fitted.Jokulsa <- jokulsa[,1] - Residuals.Jokulsa
Flow.Jokulsa <- jokulsa[,1]
Jokulsa.fit <- data.frame(Flow.Jokulsa, Fitted.Jokulsa,

Residuals.Jokulsa, Normresid.Jokulsa)
acf(Normresid.Jokulsa)
pacf(Normresid.Jokulsa)

The parameter estimates of the four-regime NeSETAR model are given by:

> fit1$coefficients
(Intercept) Q1

4.833466 0.817592

> fit2$coefficients

Q1 Q2 P1 Tm
1.417020077 -0.399618495 -0.003110877 0.519265557

> fit3$coefficients

Q1 Q2 P1s Tm T3
1.296205158 -0.315028732 -0.006475488 1.214949412 -0.914085532

> fit4$coefficients

Call:
lm(formula = Q ~ Q1 + Tm + T1 + T3, data = x4)
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Coefficients:
(Intercept) Q1 Tm T1 T3

49.2127 0.4485 3.4697 3.7486 -6.0845

The sample ACF does not suggest any serial correlations in the normalized
residuals. However, for the sample PACF significant values can be seen at lags
2, 10, 11, 19, and 25. This suggests that some further improvements of the fitted
NeSETAR model are required. In this context, we note that for reliable stepwise
regression the number of observations (39) in the fourth regime is low. So, one
may try to improve the identification of this particular regime.

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series  Normresid.Jokulsa

0 5 10 15 20 25 30

−
0.

05
0.

00
0.

05

Lag

P
ar

tia
l A

C
F

Series  Normresid.Jokulsa

Figure 2.4: Jökulsá Eystri river time series. Sample ACF and sample PACF of the
normalized residuals together with asymptotic 95% confidence bands (blue medium dashed
lines).

2.12 (a) Let Yt−1 + δ ≤ 0 and Yt−1 ≤ 0. Expressing the model for Yt+1 gives

Yt+1 = (φ1 + φ2)
(
(φ1 + φ2)Yt + εt

)
+ εt+1.

Then, choosing a shock of size εt = δ, setting εt+1 = 0, and conditioning on the
information set ωt−1, gives the conditional expectations with and without the
shock as

Et−1[Yt+1|εt = δ, εt+1 = 0] = (φ1 + φ2)
(
(φ1 + φ2)Yt + δ

)
+ 0,

Et−1[Yt+1|εt = 0, εt+1 = 0] = (φ1 + φ2)
(
(φ1 + φ2)Yt + 0

)
+ 0.

So the traditional impulse (TI) response function is given by

TI(1, δ, ωt−1) = Et−1[Yt+1|εt = δ, εt+1 = 0] − Et−1[Yt+1|εt = 0, εt+1 = 0]

= (φ1 + φ2)δ.

Similarly, for the case Yt−1 + δ > 0 and Yt−1 > 0 it follows that TI(1, δ, ωt−1) =
φ1δ. Jointly with the remaining two cases, we have in summary

TI =






(φ1 + φ2)δ if Yt−1+δ ≤ 0 and Yt−1 ≤ 0,
(φ1 + φ2)δ + φ1

(
(φ1 − φ2) − φ1

)
Yt−1 if Yt−1+δ ≤ 0 and Yt−1 > 0,

φ1δ + (φ1 + φ2)
(
φ1 − (φ1 + φ2)

)
Yt−1 if Yt−1+δ > 0 and Yt−1 ≤ 0,

φ1δ if Yt−1+δ > 0 and Yt−1 > 0.

It is clear that the TI response function depends on the combined magnitude of
the history Yt−1 and the shock δ, relative to the value of the threshold at r = 0.
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Table 2.2: Impulse response functions of a stationary SETAR(2; 1, 1) process and a sta-
tionary AR(1) process.

H SETAR(2; 1, 1) AR(1)
δ = 1 δ = −1 δ = 1 δ = −1

0 0.9982 -0.9998 1.0000 -1.0000
1 0.7397 -0.5536 0.4000 -0.4000
2 0.5595 -0.3661 0.1600 -0.1600
3 0.4343 -0.2654 0.0640 -0.0640
4 0.3438 -0.2022 0.0256 -0.0256
5 0.2757 -0.1586 0.0102 -0.0102
6 0.2234 -0.1266 0.0041 -0.0041
7 0.1824 -0.1023 0.0016 -0.0016
8 0.1497 -0.0833 0.0007 -0.0007
9 0.1233 -0.0683 0.0003 -0.0003
10 0.1020 -0.0562 0.0001 -0.0001

The TI response function is not symmetric in the size and sign of the shock.
Positive and negative values of δ yield impulse responses that are not opposite
in sign, as for instance in the case of a linear time series model; see also part
(b).

(b) The bootstrap simulation results are summarized in Table 2.2. For comparison
the analytic TI response function for a stationary AR(1) process with parameter
φ = (0.9− 0.5) = 0.4 is included. Reversing the shocks from δ = 1 to δ = −1 for
the SETAR(2; 1, 1) process results in asymmetrical GIRFs, with the responses
decaying at a faster rate for δ = −1. In contrast, for the AR(1) process the
absolute values of the impulse responses are the same across all horizons H.
Moreover, for both δ = 1 and δ = −1, the AR(1)–TI responses decay (geomet-
rically) at a much faster rate than the responses for the SETAR process. The
relevant MATLAB computer code is given below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 2.12(b)
% File: nlm_girf.m
%
% Program to compute GI response functions (GIRF).
% Based on Koop et al. (1996), J. of Econometrics, 74(1), 119-147.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function nlm_girf( )

clear all % clear variables from memory
clc % clear command window
rng(123) % seeds the random number generator
% Parameters
delta = 1; % Size of the shock
phi1 = 0.9; % AR(1), and first TAR parameter
phi2 = -0.50; % second TAR parameter
phi = phi1+ phi2;
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B = 1000; % Number of Bootstrap replications
H = 10; % Maximum forecast horizon of impulses
% Simulate the data
e = randn(B,1);
y = zeros(B,1);
for i = 2:B

y(i) = phi1*y(i-1) + phi2*y(i-1)*(y(i-1)<=0) + e(i);
end

% Total number of draws needed for a given initial history
% is B-1, and H+1 for the number of impulse horizons.
BH = (B-1)*(H+1);
impulse = zeros(B-1,H+1);

% Loop through the data to change the
% initial history (condition)
for i=1:B-1

% Bootstrap residuals
ind = fix(rand(BH,1)*(B-1) + 1 );
e_boot = e(ind);
e_boot = reshape(e_boot,H+1,B-1);
ye0 = zeros(H+1,B-1);
ye1 = zeros(H+1,B-1);

% Loop through horizon of impulse responses
for j = 2:B-1

% Initial condition based on a bootstrap draw
ye0(:,j) = model(e_boot(:,j),e_boot(1,j),phi1,phi2);
% Initial condition based on history (i subscript)
% plus shock delta
ye1(:,j) = model(e_boot(:,j),e(i)+delta,phi1,phi2);

end
% Average over horizon given an initial condition
impulse(i,:) = (mean(ye1,2) - mean(ye0,2))';

end

% Average each impulse across histories for SETAR process
impulse_girf = mean(impulse)';

% AR(1) Linear impulse responses
impulse_linear = delta*recserar(zeros(H+1,1),1,phi);

format short
disp(' GI Response AR(1) Linear ')
disp([impulse_girf impulse_linear]);

end
%
%--------------------------- Functions --------------------------
% Model used to compute GI Response Function.
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%----------------------------------------------------------------
function y = model(e,y0,phi1,phi2)

y = y0 + zeros(length(e),1);
for i=2:length(y)

% SETAR model
y(i) = phi1*y(i-1) + phi2*y(i-1)*(y(i-1)<=0) + e(i);

end
end

function result = recserar(x,y0,a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 2.12(b)
% PURPOSE: computes a vector of autoregressive recursive series.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% USAGE: result = recserar(x,y0,a)
% where: x = matrix of dimension (n,k)
% y0 = matrix of dimension (p,k)
% a = matrix of dimension (p,k)
%--------------------------------------------------------------
% RETURNS:
% results(1:n,1:k) = contains columns computed
% recursively with result=y0 for rows 1:p, and
% result(j,:)=result(j-1,:).*a(1:p,:) + x(j,:)
% for rows p+1:n.
%
% written by:
% Kit Baum, Dept. of Economics, Boston College
% Chestnut Hill MA 02467 USA, baum@bc.edu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (nargin ~= 3)

error('Wrong number of arguments to recserar');
end
[n1 k1] = size(x);
[p1 k2] = size(y0);
[p2 k3] = size(a);
if (k1 ~= k2)

error('recserar x, y0 must have same number of columns');
end
if (k1 ~= k3)

error('recserar x, a must have same number of columns');
end
if (p1 ~= p2)

error('recserar y0, a must have same number of rows');
end
result = zeros(n1,k1);
for j=1:p1;

result(j,:) = y0(j,:);
end
for j=(p1+1):n1;
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result(j,:) = x(j,:);
for k=1:p1;

result(j,:) = result(j,:)+a(k,:).*result(j-k,:);
end

end

Chapter 3

3.1 For m = 1, 2, . . ., we set

ry = Eθ{1 + Y m
t |Yt−1 = y}

= 1 + (φ + ξe−γy2

)mym +
m∑

k=1

(
m

k

)

(φ + ξe−γy2

)m−kE(εk
t )ym−k

= (1 + ym)
{

1 −
`(y; θ)
1 + ym

}
,

where

`(y; θ) = [1 − (φ + ξe−γy2

)m]ym −
m∑

k=1

(
m

k

)

(φ + ξe−γy2

)m−kE(εk
t )ym−k,

and θ = (φ, ξ, γ)′. Note that

lim
|y|→∞

`(y; θ)
1 + ym

= 1 − φm.

If |φ| < 1, then 1 − φm > 0 and there exists k > 0 and δ > 0, such that `(y; θ)/(1 +
ym) ≥ δ ∀|y| > k. This implies Eθ{1 + Y m

t |Yt−1 = y} ≤ (1 + ym)(1 − δ) ∀|y| > k.
Since sup|y|≤k |ry| < ∞, it follows from Feigin and Tweedie (1985, Thm. 1)3. that
{Yt, t ∈ Z} is geometrically ergodic for each θ ∈ Θ and E|Yt|m < ∞, ∀m = 1, 2, . . .,
where Θ = {θ : |φ| < 1, γ > 0}.

3.2 The reconstruction errors can be written as

et = εt − ε̂t

= ψ(εt−1)εt−1 − ψ(ε̂t−1)ε̂t−1

= ψ(ε̂t−1)
(
εt−1 − ε̂t−1

)
−
(
ψ(ε̂t−1) − ψ(εt−1)

)
εt−1

= ψ(ε̂t−1)et−1 −
(
ψ(ε̂t−1) − ψ(εt−1)

)
εt−1.

Hence,

|et| = |ψ(ε̂t−1)et−1 +
(
ψ(ε̂t−1) − ψ(εt−1)

)
| ≤ γ|et−1| + 2γ|εt−1|.

Recursive substitution gives

|et| ≤ 2γ|εt−1| + γ
{
2γ|εt−2| + γ

(
2γ|εt−3| + γ(∙ ∙ ∙ )

)}
≤ 2γ

t∑

j=1

|εt−j |γ
j−1 + γt|e0|.

3See also Section 3.4.2 of the main text.
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Since ε̂0 = 0, e0 = ε0. So, we have

|et| ≤ 2γ

t−1∑

j=1

|εt−j |γj−1 + |ε0|
(
2γγt−1 + γt

)
≤ 3γ

t∑

j=1

|εt−j |γj−1.

Using Jensen’s inequality E|εt|nE|εt|m ≤ E|εt|n+m, we get

E|εt−j1 | ∙ ∙ ∙E|εt−jm | ≤ E|εt|
m ≤ c < ∞.

So, for m ≥ 1, it follows that

E|et|
m ≤ 3mγmc

( t∑

j=1

γj−1
)m

≤ c∗(1 − γ)−m,

which shows that {Yt, t ∈ Z} is invertible in case the coefficients are unknown.

3.3 (a) With g(εt−1; β) = −βε2
t−1, the reconstruction errors satisfy the stochastic equa-

tion

et = g(εt−1; β) − g(et−1 + εt−1; β) = −βε2
t−1 + β(et−1 + εt−1)

2

= et−1(βet−1 + 2βεt−1).

Linearizing around et = 0 yields the homogeneous stochastic equation et =
2βεt−1et−1. Its solution is given by

et = e0(2β)t
t∏

s=1

εs−1.

In particular,

|et| = |e0| exp
(
t

t∑

s=1

{log |2β| + log |εs−1|}/t
)
.

Hence, if log |2β| + E log |εt| < 0 the model is locally invertible. Since {εt}
i.i.d.
∼

N (0, 1), E log |εt| = −(C +log 2)/2 where C = 0.57721 ∙ ∙ ∙ is Euler’s constant, it
follows that a condition for local invertibility is |β| < −(1/2)E log |et| = 0.3176.

(b) Using Algorithm 3.1 in the main text, Figure 3.1 gives a graphical representation
of the proportion of non-invertible BL models, out of 1,000 MC replications, for
T = 50 (blue medium dashed line) and 100 (black solid line). The parameter β
was taken in the range [−1.5, 1.5] with step size of 0.01. As can be seen there
is not much difference between the two sample sizes. In both cases the model
inverts for |β| < 0.85.

3.4 (a) Consider the more general BL(p, 0, Q, 1) model

Yt =
p∑

i=1

φiYt−i +
Q∑

u=1

ψ1uYt−uεt−1 + εt.

Let s = max(p,Q), and Yt = (Yt, . . . , Yt−s+1)′. The BL process in state space
representation is given by

Yt = AYt−1 + BXt−1εt−1 + Cεt,
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Figure 3.1: Proportion of non-invertibility for the BL model Yt = εt + βε2
t−1 for T = 50

and T = 100; 1,000 MC replications.

where

A =

(
φ1 φ2 ∙ ∙ ∙ φp−1 φp 0 ∙ ∙ ∙ 0

Ip−1 0(p−1)×(s−1)

)

s×s

B =

(
ψ11 ∙ ∙ ∙ ψ1Q 0 ∙ ∙ ∙ 0

0(s−1)×s

)

s×s

, C = (1, 0, ∙ ∙ ∙ , 0)′.

Assume for simplicity of notation that {εt}
i.i.d.
∼ N (0, 1). Then, following Liu

(1985), define

μ(t) = E(Yt), V(t) = E(YtY
′
t), U(t) = E(YtY

′
tεt), W(t) = E(YtY

′
tε

2
t ).

Since {Yt} and {εt′} are independent for all t′ > t, we have E(Ytεt) = C. From
the state space representation, we have by recursive substitution

μ(t + 1) = Aμ(t) + BC = Atμ(1) +
( t−1∑

j=0

Aj
)
BC.

Then a sufficient condition for limt→∞
(
Atμ(1) + (

∑t−1
j=0 Aj)BC

)
< ∞ is that

ρ(A) < 1 (called first-order stationarity ). Since in that case limt→∞ μ(t) =
(I − A)−1BC

.
= μ.

For second-order stationarity, we have

V(t) = AV(t − 1)A′ + AU(t − 1)B′ + BU(t − 1)A′ + BW(t − 1)B′ + CC′,

where

U(t) = Aμ(t − 1)C′ + Cμ′(t − 1)A′ + BCC′ + CC′B′,

W(t) = AV(t − 1)A′ + AU(t − 1)B′ + BU(t − 1)A′ + BW(t − 1)B′ + 2CC′

= V(t) + 2CC′.
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Suppose the condition for first-order stationarity is satisfied, then

U(t)
.
= U = AμC′ + Cμ′A′ + BCC′ + CC′B′,

V(t) = AV(t − 1)A′ + BV(t − 1)B′.

Let vec{V(t)} = (V(t).1, (V(t).2, . . . , (V(t).s)′, where (V(t)).i is the ith column
of V(t) (i = 1, . . . , s). Since vec{DFG} = (G′⊗D)vec(F), for any three squared
matrices, D, F and G of the same order. Then we have

vec{V(t)} = (A ⊗ A + B ⊗ B)vec{V(t − 1)}.

Now, a sufficient condition for second-order stationarity is that

ρ(A ⊗ A + B ⊗ B) < 1.

For model (3.46) with s = 1, we have A ⊗ A + B ⊗ B = φ2 + ψ2. Hence, the
condition for second-order stationarity reduces to φ2 + ψ2 < 1.

It should be mentioned that in the case p = Q = 1, the above result was earlier
obtained by Pham and Tran (1981). In particular, let {εt}

i.i.d.
∼ N (0, σ2

ε). Then,
if |φ| < 1, a necessary and sufficient condition for the existence of a strictly
stationary process {Yt, t ∈ Z} satisfying the model (3.46) is φ2 + ψ2σ2

ε < 1.
Clearly, replacing φ, ψ and σ2

ε by their estimates, we see that the fitted model
(3.47) satisfies this condition.

(b) From the results of Liu (1985), summarized in Table 3.3 of the main text,
a sufficient condition for invertibility of the BL(p, 0, Q, 1) process is given by
E log |C′BYt| < 0. A more useful sufficient condition is E(C′BYt)2 < 1. For
the BL(1, 0, 1, 1) model (3.47) with p = Q = 1, the condition for invertibility
becomes ψ2E(Y 2

t ) < 1.

Pham and Tran (1981) arrive at the above result by first writing (3.47) in an
equivalent Markovian representation

Yt = Zt−1 + εt, Zt = {φ + ψεt}Zt−1 + {φ + θεt}εt,

where {εt} are i.i.d. random variables with E(εt) = 0, E(ε2
t ) = σ2

ε , and E(ε4
t ) <

∞. Then, assuming stationarity, it is easy to see that

E(Zt) =
ψσ2

ε

1 − φ
,

Var(Zt) = (φ2 + ψ2σ2
ε)Var(Zt) + Var

{
ψε2

t +
(
φ +

ψ2σ2
ε

1 − φ

)
εt

}
,

where the last term in Var(Zt) is positive, given the assumption that ε2
t is almost

surely not a linear function of εt. Therefore (1 − φ2 − ψ2σ2
ε)Var(Zt) > 0, which

implies that 1− φ2 −ψ2σ2
ε > 0. From the above results, and some reordering of

terms, it follows that

Var(Zt) =
σ2

ε

1 − φ2 − λ2

{
vλ2 +

( λ2

1 − φ
+ φ

)2

+ 2cλ
( λ2

1 − φ
+ φ

)}
,

where λ = ψσε, v = Var(ε2
t )/σ4

ε , and c = E(ε3
t )/σ3

ε . Then

Var(Y 2
t ) =

σ2
ε

1 − φ2 − λ2

{
1 + vλ2 +

4φλ2

1 − φ
+ 2cλ

( λ2

1 − φ
+ φ

)}
.
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Thus, the invertibility condition becomes

(
v +

4φ

1 − φ

)
λ4 + 2λ2 + 2cλ3

( λ2

1 − φ
+ φ

)
− (1 − φ2) < 0.

In the Gaussian case, the above result reduces to (3.48).

(c) Substituting the parameter estimates into condition (3.48) gives

2(1 + 0.5421)(0.0284)4 + 2(1 − 0.5421)(0.0284)2 − (1 − 0.5421)2(1 + 0.5421)

= −0.3234 < 0.

So, the invertibility condition is satisfied.

3.5 Let βi,t = θi +
∑P

j=0 ψijYt−j (i = 1, . . . , Q), where Q = max{q,Q}. Then the BL
model becomes

Yt = φ0 +
p∑

j=1

φjYt−j +
Q∑

j=1

βj,t−jεt−j + θ0εt.

Define

Zi,t = φ0 +
p∑

j=i

φjYt+i−j +
Q∑

j=i

βj,t+i−jεt+i−j ,

and observe that Yt = Z1,t + θ0εt. Moreover, it follows that

Zi,t = Zi+1,t−1 + φiYt + βi,tεt (i = 1, . . . , Q − 1),

ZQ,t = φ0 +
p∑

j=Q

φjYt+Q−j + βQ,tεt.

So, by replacing Yt+1−i by ZQ+i,t (i = 1, . . . , P = max{p−Q,P}) in the first equation
we obtain the representation

Zi,t = (φi + ψi,0εt)Z1,t−1 + Zi+1,t−1 +
P∑

j=1

ψijεtZQ+j,t−1

+ {(φiθ0 + θi)εt + θ0ψi,0ε
2
t} (i = 1, . . . , Q − 1).

For the second equation, we have

ZQ,t = (φQ + ψQ,0εt)Z1,t−1 +
P∑

j=1

(
φQ+j + ψQ,jεt

)
ZQ+j,t−1

+ {(φQ θ0 + θQ)εt + θ0ψQ,0ε
2
t},

while

ZQ+1,t = Z1,t−1 + θ0εt, ZQ+i,t = ZQ+i−1,t−1.

From these results, it can be seen that the general form of At and Bt has the structure
At = A0 + A1εt and Bt = B0 + B1εt + B2ε

2
t .
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Figure 3.2: (a) Contour plot of the invertibility region for the asMA(1) model for T = 100
(blue dots) and the function |β−| = 1/|β+| (blue solid lines), and Wecker’s invertibility
region |β+| < 1 and |β−| < 1 (red solid lines); (b) Invertibility region based on the criterion
|Ek| → 0 as t → ∞ following from the model specification in Exercise 3.6 of the main text.

3.6 (a) Using Algorithm 3.1 of the main text, Figure 3.2(a) shows a graphical repres-
entation of the empirical invertibility region (blue dots) for a time series of size
T = 100, based on 1,000 MC replications.

(b) Figure 3.2(a) also includes the analytical invertibility region (red solid lines) de-
rived by Wecker (1981). It is interesting to see that the empirical region indicates
invertibility over a much wider range of parameter values than the one based on
the conditions |β+| < 1 and |β−| < 1. In fact, a simple approximation to the
empirical invertibility region is given by the necessary condition |β+||β−| < 1.
The blue solid lines in Figure 3.2(a) represent this latter condition graphically.
Obviously, this invertibility region is much closer to the empirically found region
than the region enclosed by the red solid lines.

3.7 (a) Rewrite the asMA(1) model in the form

Y1 = ε1

(1 − β+B)Y2 = ε2 if ε1 > 0,

(1 − β−B)Y2 = ε2 if ε1 < 0,

(1 − β+B + β+2

B2)Y3 = ε3 if ε1 > 0 and ε2 > 0,

(1 − β−B + β−2

B2)Y3 = ε3 if ε1 < 0 and ε2 < 0,

(1 − β−B + β+β−B2)Y3 = ε3 if ε1 > 0 and ε2 < 0,

(1 − β+B + β+β−B2)Y3 = ε3 if ε1 < 0 and ε2 > 0,

...

with B the backward shift operator. Clearly, at any time point t the asMA(1)
model has a “dual” NLAR representation with 2t−1 different linear AR poly-
nomials. When {εt} is a WN sequence with zero mean and symmetric mar-
ginal distribution, each polynomial arises with equal probability. Let β(k) =
β+I(εk ≥ 0) + β−I(εk < 0). Then, for arbitrary t, the resulting model has the
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form

Yt =β(t − 1)Yt−1−β(t − 1)β(t − 2)Yt−2+∙ ∙ ∙−β(t − 1) ∙ ∙ ∙ β(1)Y1+εt.

(b) As every combination β(t − 1) ∙ ∙ ∙ β(t − k) = (β+)j(β−)(k−j) (j = 0, . . . , k)
arises with binomial probability P(j) = [k!/(j!(k − j)!)]( 1

2 )k the probability for
each possible parameter combination in the autoregressive representation can
be calculated. The density function P(j) is symmetric. The expected value of
the parameter combinations is given by Ek =

∑k
j=0 P(j)(β+)j(β−)k−j . Hence,

another way to define invertibility for the asMA(1) model is to require that
|Ek| → 0 as k → ∞. Figure 3.2(b) shows a graphical representation of the
invertibility contour for k = 50.

(c) Assume |βi| < |β(εt−1)| (i = 1, 2). The reconstruction errors are

| et| ≤ |β(εt−1) εt−1 − β(ε̂t−1) ε̂t−1|.

If εt−1, ε̂t−1 ≥ 0, i.e. both values lie on one side of the threshold, we have
β(εt−1) = β(ε̂t−1). Hence,

| et| ≤ | β(εt−1)| | εt−1 − ε̂t−1| = |β(εt−1)| | et−1|.

If, on the other hand, εt−1 ≥ 0 and ε̂t−1 < 0, we have

| et| ≤ |β(εt−1)| | εt−1| + | − β(ε̂t−1)| | ε̂t−1|

≤| β(εt−1)|
(
| εt−1| + | ε̂t−1|

)
= |β(εt−1)|

(
εt−1 − ε̂t−1

)
= |β(εt−1)| | et−1|.

Finally, if εt−1 < 0 and ε̂t−1 ≥ 0, one may proceed exactly as above. Thus, in
summary, we have | et| ≤ | β(εt−1)| | et−1|.

Now, let |bi| < |β(εt−1)| (i = 1, 2), and assuming that the root λ1, say, of
the first-order equation f(z) = z − |β(εt−1)| = 0 is smaller than unity. Then
{Yt, t ∈ Z} is invertible in the sense that E|et| → 0 as t → ∞. This latter result
can be seen as follows. Let αi = |β(εt−1)|αi−1 (i = 1, 2, . . .) with α0 = E| e0|. By
repeated substitution, and assuming the model is correctly specified, it follows
that E|et| ≤ αt ∀t ≥ 1. Now, for all t < t0, and using | et| ≤ | β(εt−1)| | et−1|, we
have

E| et0 | ≤ E
(
|β(εt−1)| | et0−1|

)
= |β(εt−1)|E| et0−1| ≤ |β(εt−1)|αt0−1 = αt0 .

Hence, the sequence {E|et|} weakly majorizes (or dominates) from above the
sequence {αt}. The homogeneous solution of the first-order difference equation
αi − |β(εt−1)| = 0 is given by αt = A1λ

t
1, where A1 is a constant which follows

from solving α0 = E|e0|. Because |λ1| < 1, we have |αt| ≤ |A1| |λ1|t, and
consequently αt → 0 as t → ∞, which completes the proof. Hence, it is clear
that the invertibility region has the form |βi| < 1, (i = 1, 2), and |β1 + β2| < 1.
However, since |βi| < 1, the last inequality can occur only if |β1|+ |β2| < 1. Note
that the resulting invertibility region is identical to the one in Figure 3.2(b).

3.8 Figure 3.3(a) shows a plot of the time series {Xt}389
t=1. Note the seasonal pattern in

the data with a period of 12 months. Moreover, we see a steep upward trend for the
early time period 1948 – 1950, and a slow downward trend for the period 1950 – 1964.
Hence, it makes sense to analyze the series Yt = (1−B)(1−B12)Xt; see Figure 3.3(b).
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Figure 3.3: (a) Monthly West German unemployment time series (Xt) covering the time
period 1948−1980 (389 observations). The red medium dashed vertical line denotes the start
of the out-of-sample forecasting period; (b) The differenced time series {Yt = (1 − B)(1 −
B12)Xt}365

t=1.

Note that the parameters of the fitted BL model are very small. The characteristic
roots of the polynomial φ(z) = 1−0.0874z+0.1261z2−0.0426z9−0.2556z11+0.5067z12

are lying outside the unit circle (the reader may want to check this statement), indic-
ating that the process is stationary. Now, using the invertibility check in Algorithm
3.1, we observe that the fitted subset BL model is indeed invertible. In particular, in
Figure 3.4 we see that the series {êt}

1,000
t=353 remains stable for all lead periods up to

time t = N = 1,000.

To ease reproduction of the above results the MATLAB code is given below. The
code can be quite easily modified to assess invertibility of other nonlinear models.

Figure 3.4: Plot of {et}
1,000
t=353 versus time t for the subset BL model fitted by Subba Rao

and Gabr (1984) to the differenced monthly West German unemployment time series.
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function[res,hN]=Empinv(data,p,pAR,pAR1,f,f1,ip,ip1,iq1,cnst,s2,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 3.8 (see also Algorithm 3.1)
% File: Empinv.m
%
% Checking empirical invertibility of a mixed (subset) BL model
% with a linear AR part.
% INPUT:
% data = time series
% p = maximum AR order
% pAR = number AR lags;
% pAR1 = number of mixed lag AR terms
% f = (pAR * 1) parameter vector for pure AR part
% (Note: input assumes all lags are on RHS)
% f1 = (pAR1 * 1) parameter vector for mixed BL part
% ip = (pAR * 1) vector with lags for pure AR part
% ip1 = (pAR1 * 1) vector with lags for Y_{t-ip1}*e_{t-iq1})
% iq1 = (qBL1 * 1) vector with lags for Y_{t-ip1}*e_{t-iq1})
% cnst = constant
% s2 = residual variance
% N = number of "after sample" observations
%
% OUTPUT:
% res = "after sample" residuals
% hN = estimate of E[e^{2}_{t}]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = data;
T = length(data);
qBL1 = pAR1;

% Obtain "within sample" residuals
e = zeros(p,1);
for it=(p+1):T

v1 = 0;
v2 = 0;
for j=1:pAR

v1 = v1+f(j)*y(it-ip(j)); % Linear AR part
end
for j=1:qBL1

v2 = v2+f1(j)*y(it-ip1(j))*e(it-iq1(j));
end

e(it) = y(it)-v1-v2-cnst;
end

% Generate "after sample" observations Y_{T+1},...,Y_{N}
% using past observations of Y(t), past values of e(it),
% and values of epsilon-tilde(t)
rng('default') % The same random numbers are produced as if you

% restarted MATLAB
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u3 = normrnd(0,1,N,1);

for it=T+1:N
e(it) = sqrt(s2)*u3(it); % series epsilon-tilde_{t}
v1 = 0;
v2 = 0;
for j=1:pAR

v1 = v1+f(j)*y(it-ip(j));
end
for j=1:qBL1

v2 = v2+f1(j)*y(it-ip1(j))*e(it-iq1(j));
end
y(it) = e(it)+v1+v2+cnst;

end

% Obtain "after sample" residuals and hN=sum(e^2)/(it-T).
% For small values of the ratio (ht/it), the model is assumed to be
% invertible
hN = zeros(N,1);
ht = 0;
for it=T+1:N

v1 = 0;
v2 = 0;
for j=1:pAR

v1 = v1+f(j)*y(it-ip(j));
end
for j=1:qBL1

v2 = v2+f1(j)*y(it-ip1(j))*e(it-iq1(j));
end
res(it) = y(it)-v1-v2-cnst; % (Y-tilde)-(fitted "after sample" values)
ht = ht+(res(it)-u3(it))*(res(it)-u3(it));
hN(it) = ht/(it-N);

end

Chapter 4

4.1 We begin by noting that from the definition of fY (∙, ∙), we have

fY (ω1, ω2) = fY (ω2, ω1), fY (−ω1,−ω2) = f∗
Y (ω1, ω2),

where ∗ denote complex conjugate. Furthermore, since exp(2πi) = 1, we have for any
two integers k, `,

fY (ω1 + k, ω2) = fY (ω1, ω2 + k) = fY (ω1 + k, ω2 + `) = fY (ω1, ω2).

From these facts, all values of fY (∙, ∙) can be obtained for 0 ≤ ω1 ≤ ω2 ≤ 1. We next
show that in fact we only need fY (∙, ∙) for 0 ≤ ω1 ≤ ω2 ≤ 1

2 . If ω1 and ω2 are both in
[ 12 , 1], we use

fY (ω1, ω2) = f∗
Y (−ω1,−ω2) = f∗

Y (1 − ω1, 1 − ω2),
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since 1 − ω1 and 1 − ω2 are both in [0, 1
2 ]. If ω1 ∈ [0, 1

2 ] while ω2 ∈ [ 12 , 1], we use

fY (ω1, ω2) = fY (ω1,−ω1 − ω2) = fY (−ω1 − ω2, ω2), (∗)

which follows from the symmetry relations (4.2). For example,

fY (ω1,−ω1 − ω2) =
∞∑

u,v=−∞

γY (u, v) exp{−2πiuω1 − 2πiv(−ω1 − ω2)}

=
∞∑

u,v=−∞

γY (u − v,−v) exp{−2πi(u − v)ω1

− 2πi(u − v)ω1 − 2πi(−v)ω2}

= fY (ω1, ω2).

The symmetry relations for γY (∙, ∙) follow from writing the order of the three terms in
its defining expectation in three different orders, which of course doesn’t change the
value of the expectation.

If ω1 + ω2 ∈ [ 12 , 1], then 1 − ω1 − ω2 ∈ [0, 1
2 ], and we can get fY (ω1, ω2) from

fY (ω1, 1 − ω1 − ω2) as in the first equality in (∗) while if ω1 + ω2 ∈ [1, 1 1
2 ], then

2 − ω1 − ω2 ∈ [ 12 , 1] and we can get fY (ω1, ω2) using the second equality in (∗) by

fY (ω1, ω2) = fY (2 − ω1 − ω2, ω2) = f∗
Y (1 − (2 − ω1 − ω2), 1 − ω2)

= f∗
Y (ω1 + ω2 − 1, 1 − ω2),

and ω1 + ω2 − 1 and 1 − ω2 are both in [0, 1
2 ]. Finally, the fact the fY (ω1, ω2) =

fY (ω1, 1 − ω1 − ω2) gives that we only need fY (ω1, ω2) for ω2 = 1 − ω1 − ω2, i.e., for
ω2 = (1 − ω1)/2.

4.2 (a) The process is given by Yt = εt + βYt−2εt−1 with {εt}
i.i.d.
∼ N (0, σ2

ε) which is
identical to the BL process considered in Exercise 1.2. We already showed that
E(YtYt−k) = 0 for k > 0 and that Var(Yt) = γY (0) = σ2

ε/(1 − β2σ2
ε). Now

E(YtYt−kYt−`) = E[(εt + βYt−2εt−1)(εt−k + βYt−k−2εt−k−1)Yt−`]

= E[(εtεt−k + βYt−2εt−1εt−k + βYt−k−2εtεt−k−1

+ β2Yt−2Yt−k−2εt−1εt−k−1)Yt−`]

=

{
βσ2

εE(Y 2
t−2) = βσ4

ε/(1 − β2σ2
ε) if k = 1, ` = 2,

0 otherwise.

Evaluating E(Y 2
t Y 2

t−1) gives, because of stationarity,

E(Y 2
t Y 2

t−1) = E(ε2
t Y

2
t−1 + 2βεtεt−1Y

2
t−1Yt−2 + β2Y 2

t−1ε
2
t−1Y

2
t−2)

= σ2
εE(Y 2

t ) + β2E{(ε2
t−1 + 2βεt−1Yt−3εt−2

+ β2Y 2
t−3ε

2
t−2)ε

2
t−1Y

2
t−2}

= σ2
εE(Y 2

t ) + 3β2σ4
εE(Y 2

t ) + β4σ2
εE(Y 2

t−2Y
2
t−3ε

2
t−2).

Now, consider the third term in the above expression. After expanding Y 2
t−2
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first and then expanding Y 2
t−3 we successively have, because of stationarity,

E(Y 2
t−2Y

2
t−3ε

2
t−2) = E[(β2Y 2

t−4ε
2
t−4 + ε2

t−2 + 2βεt−2εt−4Yt−4)Y
2
t−3ε

2
t−2]

= β2E(Y 2
t−4Y

2
t−3ε

2
t−4ε

2
t−2) + 3σ4

εE(Y 2
t )

= β2E[Y 2
t−4(β

2Y 2
t−5ε

2
t−5 + ε2

t−3 + 2βεt−3εt−5Yt−5)

× ε2
t−4ε

2
t−2] + 3σ4

εE(Y 2
t )

= β2[β2σ4
εE(Y 2

t−4Y
2
t−5ε

2
t−4) + 3σ6

εE(Y 2
t )]+3σ4

εE(Y 2
t ).

So,

(1 − β4σ4
ε)E(Y 2

t−2Y
2
t−3ε

2
t−2) = (3β2σ6

ε + 3σ4
ε)E(Y 2

t ).

Substituting the above result in E(Y 2
t Y 2

t−1) gives

E(Y 2
t Y 2

t−1) = (1 + 3β2σ2
ε)

(1 − β2σ2
ε)σ2

ε

(1 − β2σ2
ε)

E(Y 2
t )

+ 3β4 (β2σ6
ε + σ4

ε)σ2
ε

(1 + β2σ2
ε)(1 − β2σ2

ε)
E(Y 2

t )

= (1 + 2β2σ2
ε − 3β4σ4

ε)E2(Y 2
t ) + 3β4σ4

εE
2(Y 2

t )

= (1 + 2β2σ2
ε)E2(Y 2

t )

= (1 + 2β2σ2
ε)

σ4
ε

(1 − β2σ2
ε)2

.

(b) Because of stationarity, the one-step ahead MSFE is given by

MSFE(1) = E[(Yt+1 − Y Q

t+1|t)
2] = E[(Yt+1 − c1,2YtYt−1)

2]

= E(Y 2
t ) − 2c1,2E(Yt+1YtYt−1) + c2

1,2E(Y 2
t Y 2

t−1).

Minimizing with respect to c1,2 gives

c1,2 =
E(Yt+1YtYt−1)
E(Y 2

t Y 2
t−1)

=
βσ4

ε

1 − β2σ2
ε

(1 − β2σ2
ε)2

σ4
ε(1 + 2β2σ2

ε)
= β

1 − β2σ2
ε

1 + 2β2σ2
ε

.

(c) The variance of the error of the best quadratic predictor is

E(Yt − Y Q

t+1|t)
2 = σ2

Y −
β2(1 − β2σ2

ε)2

(1 + 2β2σ2
ε)2

σ4
ε(1 + 2β2σ2

ε)
(1 − β2σ2

ε)2

= σ2
Y −

β2σ4
ε

1 + 2β2σ2
ε

= σ2
Y

[
1 −

σ2
ε

σ2
Y

( β2σ2
ε

1 + 2β2σ2
ε

)]
.

Let x = β2σ2
ε , then the first derivative of f(x) = σ2

Y [1 − (σ2
ε/σ2

Y ){x/(1 + 2x)}]
is f ′(x) = (σ2

ε/σ2
Y ){3/(1 + 2x)2}. Thus, the maximum reduction relative to σ2

Y

is achieved when (1 + 2x) =
√

3, or β2σ2
ε = (

√
3 − 1)/2; i.e. when the process is

normalized the maximum reduction is 1 − (
√

3 − 1)/2 = 1 − 0.866 = 0.134.

4.3 (a) The process is given by Yt = εt(1+εt−1)+(η2
t −1) with {εt}

i.i.d.
∼ N (0, 1), {ηt}

i.i.d.
∼

N (0, 1), and both error processes are independent of each other. To derive the
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bispectrum we first need to obtain expressions for the 3rd-order cumulants. In
particular,

γY (0, 0) = E(Y 3
t ) = E[{(εt + εtεt−1) + (η2

t − 1)}3]

= E[(εt + εtεt−1)
3 + 3(εt + εtεt−1)

2(η2
t − 1)

+ 3(εt + εtεt−1)(η
2
t − 1)2 + (η2

t − 1)3]

= 0 + 0 + 0 + (15 − 3 × 3 + 3 − 1) = 8,

using the fact that for a unit normal distribution, symmetrical about mean zero,
E(Y r

t ) = 0 if r is odd, and E(Y r
t ) = (r − 1)(r − 3) ∙ ∙ ∙ 3 ∙ 1 if r is even. Next,

γY (0,−1) = E(Y 2
t Yt−1) = E[{(εt + εtεt−1)

2 + (η2
t − 1)2

+ 2(εt + εtεt−1)(η
2
t − 1)}{(εt−1 + εt−1εt−2) + (η2

t−1 − 1)}]

= E[(ε2
t + 2ε2

t εt−1 + ε2
t ε

2
t−1)(εt−1 + εt−1εt−2)

+ (η4
t − 2η2

t + 1)(εt−1 + εt−1εt−2)

+ 2(εt + εtεt−1)(εt−1 + εt−1εt−2)(η
2
t − 1)

+ (ε2
t + 2εtεt−1 + ε2

t ε
2
t−1)(η

2
t−1 − 1)

+ (η4
t − 2η2

t + 1)(η2
t−1 − 1)

+ 2(εt + εtεt−1)(η
2
t − 1)(η2

t−1 − 1)]

= 2 + 0 + 0 + (1 + 1 − 1 − 1) + (3 − 2 + 1 − 3 + 2 − 1) + 0

= 2.

Clearly, γY (0,−1) = γY (−1, 0) = γY (1, 1). Moreover, it can be shown that
γY (u, v) = 0 ∀|u|, |v| > 1. Hence, the bispectrum becomes

fY (ω1, ω2) =
∞∑

u,v=−∞

γY (u, v) exp{−2πi(ω1u + ω2v)}

= γY (1, 1) exp{−i(ω1 + ω2)} + γY (−1, 0) exp(iω1)

+ γY (0,−1) exp(iω2)

= 2[exp{−i(ω1 + ω2)} + exp(iω1) + exp(iω2)] + 8.

(b) Using the bispectrum fY (ω1, ω2) and setting α = β = 1/4 and γ = 0, the
left-hand side of (∗) is equal to

fY (α, β)fY (γ, 0)fY (−α + γ,−β − γ)

= [2{exp(−iπ) + 2 exp(iπ/2)} + 8] × [2{exp(0) + 2 exp(0)} + 8]

×[2{exp(iπ) + 2 exp(−iπ/2)} + 8] = (6 + 4i) × (14) × (6 − 4i) = 728.

Similarly, the right-hand side of (∗) is equal to

fY (β, α)fY (0,−α − β)fY (−α + γ,−γ) =

[2{exp(−iπ/2) + exp(iπ/2) + exp(0)} + 8] × [2{exp(iπ) + exp(0)

+ exp(−iπ)} + 8] × [2{exp(iπ/2) + exp(−iπ/2) + exp(0)} + 8]

= 10 × 6 × 10 = 600.

Therefore, it can be easily shown that the bispectrum (∗) cannot be represented
in the triple-product form (4.10).
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4.4 (a) The file Exercise44.r contains R functions for computing the bootstrap-based
Gaussianity and linearity test statistics summarized in Algorithm 4.4. Based on
the functions in this file, the following R code can be used for the MC simulations.

##################################################################
# R code: Exercise 4.4(a)
# File: Main_4-4(a).r
#
# Main file for computing bootstrapped Gaussianity and linearity
# test statistics. Subfunctions are in the file "Exercise44.r".
#
# INPUT:
# data = time series (here, USunemplmnt_first_dif.dat)
# repnum = number of MC replications (default = 20)
# bootnum = number of BS replications (default = 1,000)
# M = M_{b} = bispectral bandwidth (default = 4)
# p = Bootstrap AR order drawn from the discrete uniform
# distribution on {4,5,...,15}
# rows = number of gridpoints K, drawn from the discrete uniform
# distribution on {3,4,5}
# c = const*M_{b}, with const a U[1.5,3] random deviate
#
# OUTPUT:
# Hinich's Gaussianity test statistic (1st column)
# Hinich's linearity test statistic (2nd column)
# BS version of Hinich's Gaussianity test, HG-BS (3rd column)
# BS version of Hinich's linearity test, HL-BS (4th column)
##################################################################
UNEMP <- ts(data)
repnum <- 20
bootnum <- 1000
M.b <- 4
set.seed(100) # set position in pseudo-random sequence
UNEMPresults <- array(,dim=c(repnum,4))
parameters <- array(,dim=c(repnum,4))
for(i in 1:repnum){

rows <- round(runif(1,2.5,5.5))
const <- runif(1,1.5,3)
M.s <- const*M.b
ar.order <- round(runif(1,3.5,15.5))
ht <- Hinich.test(UNEMP,rows,M.b,M.s)
bt <- boot.test(bootnum,UNEMP,ar.order,rows,M.b,M.s)
UNEMPresults[i,] <- c(ht$p_G,ht$p_L,bt$boot.p_G,bt$boot.p_L)
parameters[i,] <- c(rows,M.b,M.s,ar.order)
print(i)

}
reject <- double(4) # Rejection of null hypothesis
for(j in 1:4){

sumtt <- 0
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Figure 4.1: U.S. unemployment rate data set. P -values of the HG–BS test statistic (blue
solid line), and the HL–BS test statistic (red solid line). Number of selected gridpoints K
(placed on the right side of the graph) versus the number of MC simulations.

for(i in 1:repnum){
if(UNEMPresults[i,j]<0.05){#Nominal significance level=5%
sumtt <- sumtt +1

}}
reject[j] <- sumtt/repnum

}

Figure 4.1 shows p-values of the bootstrapped version of Hinich’s Gaussianity
(HG–BS) test statistic, and p-values of the bootstrapped version of Hinich’s lin-
earity test statistic (HL–BS). Both statistics are computed for 20 MC simulations
each consisting of 1,000 BS replicates. Hinich’s Gaussianity test statistic without
bootstrapping always has a p-value less than 0.05. The bootstrapped version of
the Hinich test statistic rejects Gaussianity in 80% of the 20 randomly selected
user-defined parameters (blue solid line). Similarly, Hinich’s linearity test stat-
istic rejects the null hypothesis in 100% of the selected parameters, while the
p-values of the bootstrapped version of this test statistic (red solid line) indicate
that the first differences of the quarterly U.S. unemployment series follows a
nonlinear time series process in 65% of the selected parameters. The averaged
p-values are 0.0272 (HG–BS) and 0.0566 (HL–BS).

Of course, the outcomes of the test statistics depend on the simulated sample,
and on the user-specified parameters in the simulation. Moreover, the test res-
ults will differ between different MC simulations. Note, however, that Spear-
man’s rank correlation coefficient is positive for the pair of variables (p-value
HL–BS, K) and (p-value HL–BS, p) with p-values of 0.0179 and 0.0339, re-
spectively. On the other hand, there are no significant relationships, at the 5%
nominal level, between other combinations of p-values of the bootstrapped and
non-bootstrapped test statistics, and the randomly selected parameters K and
p respectively.

(b) The file goodnessfit.m contains the MATLAB code for computing the goodness-
of-fit test statistics ADG

m, CvMG
m, ADL

m, and CvML
m; see Algorithm 4.3. For ease

of replication, the code is given below.
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function [CvM,AD,CvML,ADL] = goodnessfit(x,cparm,nfft)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 4.4(b) (also used for computing Table 4.2)
% File: goodnessfit.m
%
% Goodness-of-fit tests statistics CvM and AD for testing
% Gaussianity and Linearity based on the paper by
% Jahan, N. and Harvill, J.L. (2008).
%
% INPUT:
% x = input time series: column vector
% cparm = resolution (smoothing) parameter c;
% 0.5<c<1.0 [default=0.51], increasing c reduces the
% variance, but increases the bias.
% nfft = FFT length [default = 128]
%
% OUTPUT:
% CvM and AD test statistics for the Gaussianity hypothesis
% CvML and ADL test statistics for the linearity hypothesis
%
% References:
% Hinich, M.J. (1982). Testing for Gaussianity and linearity of
% stationary time series. Journal of Time Series Analysis, 3(3),
% 169-176.
% DOI: 10.1111/j.1467-9892.1982.tb00339.x.
% Jahan, N. and Harvill, J.L. (2008). Bispectral-based
% goodness-of-fit tests of Gaussianity and linearity of
% stationary time series. Communications in Statistics:
% Theory and Methods, 37(20), 3216-3227.
% DOI: 10.1080/03610920802133319.
% Stephens, M.A. (1986). Tests based on EDF statistics.
% In: D'Agostino, R.B. and Stephens, M.A. (Eds.):
% Goodness-of-Fit Techniques. Marcel Dekker, New York.
% ---------------- parameter checks: -----------------------------

if (min(size(x)) ~= 1)
error('x: should be a vector')

end
nsamp = length(x);
if (exist('nfft') ~= 1)

nfft = 128;
end

nrecs = floor(nsamp/nfft);
nrecs = max(nrecs,1);
ksamp = min(nfft,nsamp);
if (nfft > nsamp)

disp(' glstat results are unreliable if zero-padding is severe: ')
disp(' fft length= ',int2str(nfft),' data length=',int2str(nsamp))

end
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if (exist ('cparm') ~= 1)
cparm = 0.51;

end
if (cparm >= 1.0)

error('cparm cannot be greater than or equal to 1.')
end
if (cparm <= 0.5 && nrecs == 1)

error('cparm: for single segments: allowed range is (0.5,1.0)')
end

M = fix(nfft^cparm); M = M + 1 - rem(M,2);
Msmuth = M;

% ----------------- Estimate raw bispectrum ------------------------
mrow = fix(nfft/3)+1; ncol = fix(nfft/2)+1;
F = zeros(mrow,ncol);
S = zeros(nfft,1);

mask = hankel(1:mrow,mrow:mrow+ncol-1);
for k=1:nrecs

y = x(1:ksamp);
xf = fft(y-mean(y), nfft);
xc = conj(xf);
S = S + xf .* xc; % Power spectrum
F = F + xf(1:mrow) * xf(1:ncol).' .* ...

reshape (xc(mask), mrow, ncol) ;
end
F = F/(nfft*nrecs); % `Raw' bispectrum
S = S/(nfft*nrecs); % `Raw' power spectrum

% ---------- Zero out area outside principal domain ---------------
F(1:mrow,1:mrow) = triu(F(1:mrow,1:mrow));
Q = ones(mrow, ncol);
Q(1:mrow,1:mrow) = triu(Q(1:mrow,1:mrow)) + eye(mrow);

% The 2f1 + f2 = 1 line:
r = (rem(nfft,3) == 2);
for k=mrow+1:ncol-r

j = k-mrow;
Q(mrow-2*j+2:mrow, k) = zeros(2*j-1,1);
F(:, k) = F(:,k).* Q(:,k);
Q(mrow-2*j+1, k) = 2; % Factor 2 on boundary

end

F = F(2:mrow,2:ncol); % In principal domain, no dc terms
Q = Q(2:mrow,2:ncol);
mrow = mrow-1;
ncol = ncol-1;

% -------- Smooth the estimated spectrum and bispectrum ------------
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% Msmuth * Msmuth box-car smoother
% only every Msmuth term in the smoothed output is retained
% "independent" estimates

M = Msmuth;
m1 = rem(mrow,M); m2=rem(ncol,M);
m1 = - m1 + M * (m1 ~= 0);
m2 = - m2 + M * (m2 ~= 0);
F = [F,zeros(mrow,m2);zeros(m1,ncol+m2)];
Q = [Q,zeros(mrow,m2);zeros(m1,ncol+m2)];
k = size(F)/Msmuth;
k1 = k(1); k2 = k(2);

% Apply the boxcar smoother
% can replace the next ten lines or so with
% B = kron(eye(k1),ones(1,Msmuth))*F*kron(eye(k2),ones(Msmuth,1))
% /Msmuth^2;
% Q = kron(eye(k1),ones(1,Msmuth))*Q*kron(eye(k2),ones(Msmuth,1));

ind = 1:Msmuth;
B = zeros(k1,k2); Q1 = B;
for i=1:k1

for j=1:k2
t = F((i-1)*Msmuth+ind,(j-1)*Msmuth+ind );
B(i,j) = mean(t(:));
t = Q((i-1)*Msmuth+ind,(j-1)*Msmuth+ind );
Q1(i,j) = sum(t(:));

end
end
Q = Q1;

% --------------
% At this point B corresponds to B in eqn.(2.6) of Hinich's
% paper and Q corresponds to the definition following eqn. (2.8)
% --------------

M = Msmuth;
S = conv(S, ones(M,1))/M;
S = S(M+1:M:M+nfft-1);
S1 = S(1:k1) * S(1:k2)'.* hankel(S(2:k1+1),S(k1+1:k1+k2));
S1 = ones(k1,k2) ./ S1;
ind = find(Q > 0);
Q = Q(ind);
Bic = S1(ind) .* abs(B(ind)).^2; % Squared bicoherence
scale = 2 * (Msmuth^4) / nfft;
Xstat = scale * Bic ./ Q; % 2|X_{m,n}|^2, eqn.(2.9)

% -----------------------------------------------------------------
% ---------------------- Gaussianity EDF tests with fully -----
% specified distribution CvM and AD
% -----------------------------------------------------------------

Xsort = sort(Xstat);
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q = 0.5*erfc(-Xsort/sqrt(2)); % Normal CDF
Mlength = length(Xstat); % Length M

ind = 0;
for i = 1:Mlength

if(q(i)<1 && q(i)>0) % Remove zeros and ones
ind = ind+1;
qnew(ind) = q(i);

end
end

mAD = length(qnew); % Effective length AD test (Not used)
m = Mlength; % Length CvM test

s1 = 0;
for i = 1:m

s1 = s1+(q(i)-(2*i-1)/2/m)^2;
end
CvM1 = (s1+1/12/m)/m;

% Modification for a fully specified distribution
CvM = (CvM1-0.4/m+0.6/m^2)*(1+1/m);

if(CvM >= 0.00 && CvM < 0.0275);
pvCvMG = 1- exp(-13.953 + 775.5*CvM - 12542.61*CvM^2);

elseif(CvM >= 0.0275 && CvM < 0.051);
pvCvMG = 1- exp(-5.903 +179.546*CvM -1515.29*CvM^2);

elseif(CvM < 0.092 && CvM > 0.051);
pvCvMG = exp(0.886 - 31.62*CvM + 10.897*CvM^2);

% in Table 4.9 of Stephens (1986); upper tail
elseif(CvM > 0.092);

pvCvMG = exp(1.111 - 34.242*CvM + 12.832*CvM^2);
end

fx = normcdf(Xsort,mean(Xsort),std(Xsort));
i = 1:m;
S = sum((((2*i)-1)/m)*(log(fx)+log(1-fx(m+1-i))));
AD = -m-S;

% Correction factor for small sample sizes: case normal
ADa = AD*(1 + 0.75/m + 2.25/m^2);
if (ADa >= 0.00 && ADa < 0.200);

pvADG = 1 - exp(-13.436 + 101.14*ADa - 223.73*ADa^2);
elseif (ADa >= 0.200 && ADa < 0.340);

pvADG = 1 - exp(-8.318 + 42.796*ADa - 59.938*ADa^2);
elseif (ADa >= 0.340 && ADa < 0.600);

pvADG = exp(0.9177 - 4.279*ADa - 1.38*ADa^2);
else (ADa >= 0.600 && ADa <= 13);

pvADG = exp(1.2937 - 5.709*ADa + 0.0186*ADa^2);
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end

disp(['CvM Gaussianity test= ', num2str(CvM),', ...
p-value CvM =',num2str(pvCvMG),', AD Gaussianity test= ',...
num2str(AD), ', p-value AD = ',num2str(pvADG)])
% ----------------------------------------------------------------
% --------------------- Linearity EDF tests CvM and AD ----------
% ----------------------------------------------------------------

df = 2;
xmean = mean(Xstat);
if(xmean>df)

lam = xmean-df;
else

lam = 0;
end
h = 1-(2*(df+lam)*(df+3*lam)/(3*(df+2*lam)^2)); % Exponent
Ytrans1 = (Xstat/(df+lam)); % Transformed variables
for i = 1:Mlength

Ytrans(i) = (Ytrans1(i)^(h));
end

muY1 = 1+h*(h-1)*(df+2*lam)/(df+lam)^2;
muY = muY1-h*(h-1)*(2-h)*(1-3*h)*((df+2*lam)^2)/(2*(df+lam)^4);

sigma2Y1 = h*h*(2*(df+2*lam))/((df+lam)^2);
sigma2Y = sigma2Y1*(1-(1-h)*(1-3*h)*(df+2*lam)/((df+lam)^2));

for i = 1:Mlength
Ystand(i) = (Ytrans(i)-muY)/sqrt(sigma2Y);

end
Ysort = sort(Ystand);

qlin = 0.5*erfc(-Ysort/sqrt(2)); % Normal CDF
mlin = length(Ysort); % Effective length M

i = (1:mlin);
CvML = (1/12/mlin+sum((qlin-(2*i-1)/2/mlin).^2))/mlin;

% Modification of CvM for unknown mean and variance
% as given in Table 4.7 of Stephens (1986)

CvML = CvML*(1+0.5/mlin);

% Asymptotic p-values for modified CvM as given in Table 4.9
% of Stephens (1986)

if(CvML >= 0.00 && CvML < 0.0275);
pvCvML = 1- exp(-13.953 + 775.5*CvML - 12542.61*CvML^2);

elseif(CvML >= 0.0275 && CvML < 0.051);
pvCvML = 1- exp(-5.903 +179.546*CvML -1515.29*CvML^2);

elseif(CvML < 0.092 && CvML >0.051);
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Table 4.1: P -values of the Gaussianity and linearity test statistics for the first-differences
of the quarterly U.S. unemployment rate.

Gaussiantiy (G) Linearity (L)

GOF Tests(1) Btstrp(2) GOF Tests(1) Btstrp(2) MSFE(3)

ADG
m CvMG

m TG ADL
m CvML

m ZL
IQR ZL

IDR ZL
80%

GT,K
7

3.3 × 10−7 0.028 0.013 0.106 0.826 0.043 0.008 0.054 0.872

pvCvML = exp(0.886 - 31.62*CvML + 10.897*CvML^2);
% in Table 4.9 of Stephens (1986); upper tail

elseif(CvML > 0.092);
pvCvML = exp(1.111 - 34.242*CvML + 12.832*CvML^2);

end

fxs = normcdf(Ysort,mean(Ysort),std(Ysort))';
i = (1:mlin);
S = sum((((2*i)-1)/mlin)*(log(fxs)+log(1-fxs(mlin+1-i))));
ADL = -mlin-S;

% Modification of AD test for unknown mean and variance
ADL = ADL*(1+0.75/mlin+2.25/(mlin^2));
if(ADL >= 0.00 && ADL < 0.200);

pvADL = 1 - exp(-13.436 + 101.14*ADL - 223.73*ADL^2);
elseif (ADL >= 0.200 && ADL < 0.340);

pvADL = 1 - exp(-8.318 + 42.796*ADL - 59.938*ADL^2);
elseif(ADL < 0.600 && ADL >= 0.340)

pvADL = exp(0.9177 - 4.279*ADL - 1.38*ADL^2);
elseif(ADL >= 0.600 && ADL<= 13)

pvADL=exp(1.2937 - 5.709*ADL + 0.0186*ADL^2);
end

disp(['CvM Linearity test = ',num2str(CvML),', p-value CvM = ',
...,num2str(pvCvML),', AD Linearity test = ', num2str(ADL), ',
..., p-value AD = ', num2str(pvADL)])

Using the MATLAB code for computing the test statistics ADG
m, CvMG

m, ADL
m,

and CvML
m, the nonlinear toolkit package for computing the test statistics TG,

ZL
IQR, ZL

IDR, and ZL
80%, and the MATLAB code for computing the Terdik–Máth

test statistic G(K)
7,T , one can obtain the p-values given in Table 4.1. Comparing

the p-values of the bootstrapped test statistic TG, ZL
IQR, and ZL

IDR with the
p-values 0.0272 (HG–BS) and 0.0566 (HL–BS) given in part (a), we see that
they largely agree. Note, however, that the values of M are different. Indeed,
replacing M ≡ Mb = 4 by Mb = 23 in the MC simulations, and using the same
set of parameters as in part (a), the bootstrapped form of Hinich’s Gaussianity
test statistic resulted in no rejections of the Gaussianity hypothesis, and the
bootstrapped form of Hinich’s linearity test statistic rejected the null hypothesis
for only 5% of the selected parameters. So, the test statistics are sensitive to
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the choice of Mb.

Remark: A more formal comparison of the above linearity/Gaussianity test
statistics can be based on the MATLAB function simulation−tests.m.

4.5 (a) To generate the time series in parts (a) and (b), add the following R functions to
the set of functions used in Exercise 4.4. Note, these files are already included
in the file Exercise45.r.

dataWN<-function(n){
m <- 1000
b <- 0
evars <- rnorm(n+m,0,1)
Data <- rep(b/(1),n+m) # starts with 0
for(j in 2:(n+m)){Data[j]<- evars[j]}

data <- Data[-(1:m)]
}

dataWNchi <- function(n){
m <- 1000
b <- 0
evars <- rnorm(n+m,0,1)^2
Data <- rep(b/(1),n+m) # starts with 0
for(j in 2:(n+m)){Data[j]<- evars[j]}

data <- Data[-(1:m)]
}

databil<-function(n){
b <- 0.4 # Parameter value BL process
m <- 1000
evars <- rnorm(n+m,0,1)
Data <- rep(b/(1),n+m) # starts with 0
for(j in 2:(n+m)){Data[j]<-b*Data[j-1]*evars[j-1]+evars[j]}

data <- Data[-(1:m)]
}

Next, the p-values of the test statistics can be generated by the following R code.

repnum <- 100
DATAresults <- array(,dim=c(repnum,4))
parameters <- array(,dim=c(repnum,4))
for(i in 1:repnum){
# MAKE APPROPRIATE CHANGES:databil = BL ; dataWN = WN
# dataWNchi = Chi-squared(1 df)

data <- databil(250)
bootnum <- 200
rows <- 8
M.b <- 4
M.s <- 8
ar.order <- 15
ht <- Hinich.test(data,rows,M.b,M.s)
bt <- boot.test(bootnum,data,ar.order,rows,M.b,M.s)
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Table 4.2: Empirical rejection rates based on 100 MC simulations; T = 250, B = 200.

Btstrp

DGP TG
IQR ZL

IQR TG
IQR ZL

IQR

i.i.d. N (0,1) 0.22 0.11 0.05 0.03
i.i.d. χ2

1 1.00 0.55 1.00 0.06
Bilinear 1.00 1.00 1.00 0.98

DATAresults[i,] <- c(ht$p_G,ht$p_L,bt$boot.p_G,bt$boot.p_L)
# MAKE APPROPRIATE CHANGES:

print("Bilinear, T=250, rep = 100, Mb=4")
print(i)

}

The p-values are stored in the files DATAresults normal.dat, DATAresults chi.dat,
and DATAresults bilinear. The empirical rejection rates for parts (a) and (b) can
be computed using the following R code.

reject<- double(4)
for(j in 1:4){

sumtt<- 0
for(i in 1:repnum){

if(DATAresults[i,j]<0.05){
sumtt <- sumtt +1

}}
reject[j] <- sumtt/repnum

}

The results are summarized in Table 4.2. Ideally, the empirical rejection rate
of the Gaussianity and linearity test statistics should be approximately equal to
the nominal significance level α = 0.05. Clearly, the bootstrapped test statistics
do a much better job than the non-bootstrapped test statistics which are too
high. For the χ2

1 series, we see high empirical rejection rates of the Gaussianity
tests in the bootstrap and non-bootstrap case, and low rejection rates of the
linearity test in the bootstrap case. However, the rejection rates for ZL

IQR in
the non-bootstrap case are far too high. We noticed that for large values of
T the empirical sizes of the test statistics improve, but they are still far from
satisfactory. If plenty of computing time is available one may explore this option.
Also, other types of nonlinear processes may be investigated.

(b) The BL process (4.19) with β = 0.4 is neither Gaussian nor linear. Hence, the
null hypotheses of both Gaussianity and linearity are false. Observe, in all cases
that the empirical rejection rates are high, as expected.

Chapter 5

5.1 The ASTMA(k) model is given by

Yt = εt + θkεt−k + ψkεt−kG(γεt−k), {εt}
i.i.d.
∼ N (0, σ2

ε),
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where the transition function G(∙) satisfies conditions (i) and (ii) in Section 5.1 of the
main text. Assume, for simplicity, that θk = 0. The LM-type test statistic for testing
linearity against an ASTMA model now simplifies, as Yt = εt under H0. It consists
of testing H∗

0 : β = 0 in the auxiliary regression model

Yt = βY 2
t−k + ηt.

The LS estimator of β is β̂ =
∑T

t=k+1(YtY
2
t−k)/(

∑T
t=k+1 Y 4

t−k), so that the t-statistic
is given by

tβ =
β̂

(
V̂ar(β̂)

)1/2
=

∑T
t=k+1 YtY

2
t−k

(
∑T

t=k+1 Y 4
t−k)1/2

.

Replacing the numerator of tβ by its large sample approximation (under H0) yields
the WJ test statistic. Note that, with finite samples, tβ does not follow a Student
t distribution with T − 1 degrees of freedom under H0; it is called a “pseudo-t” test
statistic. The tβ statistic will, however, be asymptotically distributed as N (0, 1) under
quite weak conditions.

5.2 It is convenient to rewrite the asAR(p) model in a more compact (matrix) form using
the matrices

Aφ =













1 0 0 ∙ ∙ ∙ 0 0
φ1 1 0 ∙ ∙ ∙ 0 0
...

. . .
. . .

φp
. . .

. . .
...

. . .
. . . 1 0

0 ∙ ∙ ∙ φp ∙ ∙ ∙ φ1 1













, Aα =













0 0 0 ∙ ∙ ∙ 0 0
α1 0 0 ∙ ∙ ∙ 0 0
...

. . .
. . .

αp
. . .

. . .
...

. . .
. . . 0 0

0 ∙ ∙ ∙ αp ∙ ∙ ∙ α1 0













.

Let Aφ,α = Aφ+AαIε,T , where Iε,T is a T ×T diagonal matrix defined as diag{I(ε1 ≥
0), . . . , I(εT ≥ 0)}. Then the asAR(p) model can be written as Aφ,αy = ε, or y =
A−1

φ,αε. The derivative of the matrix Aφ,α with respect to θi (i = 1, 2, . . . , 2p) is given
by

∂Aφ,α

∂θi
=

{
Bi (i = 1, . . . , p),
BiIε,T + AαDε,T

∂ε
∂θi

(i = p + 1, . . . , 2p),

where B is a T ×T matrix with ones on the first lower diagonal and all other elements
equal to zero, and

Dε,T = diag
(∂I(ε1 ≥ 0)

∂ε1
, . . . ,

∂I(εT ≥ 0)
∂εT

)
.

The concentrated log-likelihood function has the form

LT (θ) = −
1
2

log
(ε′ε

T

)
.

Let θ̂ = (α̂′,0′)′ be the vector of restricted estimates of θ with the associated vector
of residuals ε̂ = Aα̂y and the vector of fitted values ŷ. Then the components of the
score vector are given by

∂LT (θ)
∂θ

∣
∣
∣
H0

= −
1
σ2

ε

(∂A−1
φ,α

∂θi
y
)′

ε
∣
∣
∣
H0

= −
1
σ̂2

ε

{
(A−1

α̂ ε̂−i)′ε̂ (i = 1, . . . , p),
(A−1

α̂ ε̂+
−i+p)

′ε̂ (i = p + 1, . . . , 2p).
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The outer-product estimate of the Fisher information matrix under H0 is given by the
p × p matrix Σ̂22 − Σ̂21Σ̂

−1
11 Σ̂12 with elements

Σ̂11,ij =
ŷ′
−iΣ̂

2
εŷ−j

(ε̂′ε̂)2
, Σ̂12,ij =

(ŷ+
−i)

′Σ̂2
ε(ŷ−j)

(ε̂′ε̂)2
, Σ̂22,ij =

(ŷ+
−i)

′Σ̂2
ε(ŷ

+
−j)

(ε̂′ε̂)2
(1 ≤ i, j ≤ p),

where Σ̂12 = Σ̂′
21 and Σ̂2

ε = diag(ε̂2
1, . . . , ε̂

2
T ). Given these results, the LM-type test

statistic follows directly. Under H0 the test statistic has a χ2
p distribution, as T → ∞.

5.3 (a) An LM-type test statistic can be derived using the LM testing framework dis-
cussed in the preamble of Section 5.1 of the main text. Similar as before, the
idea is to linearize the model using the first-order approximations

fi(α
′
iYt) = g1,iα

′
iYt (i = 1, . . . , p) and gj(β

′
jYt) = h1,jβ

′
jYt (j = 1, . . . , q),

where g1,i = (dfi(z)/dz)|z=0, and h1,j = (dgj(z)/dz)|z=0. Inserting these ap-
proximations in the model yields the auxiliary linear regression model

Yt =
p∑

i=1

aiYt−i +
q∑

j=1

bjWj,t +
p∑

i=1

c′iUi,t +
q∑

j=1

d′
jVj,t + ηt,

where Ui,t = Yt−iYt, Vj,t = Wj,tYt, ci = φig1,iαi, and dj = θjh1,jβj . Assume
that the regressors in the above model are linearly independent, so that the
linearity hypothesis holds if and only if ci = 0 and dj = 0. It is convenient to
write the above model in matrix form, i.e.

Yt = x′
1,tτ1 + x′

2,tτ2 + ηt,

where

x1,t = (Yt−1, . . . , Yt−p,W1,t, . . . ,Wq,t)
′, x2,t = (U′

1,t, . . . ,U
′
p,t,V

′
1,t, . . . ,V

′
q,t)

′,

τ1 = (a1, . . . , ap, b1, . . . , bq)
′ and τ2 = (c′1, . . . , c

′
p,d

′
1, . . . ,d

′
q)

′.

Under H0 we have

∂εt

∂αi
= −φig1,iUi,t and

∂εt

∂βj
= −θjh1,jVj,t.

Then an explicit expression for the LM-type test statistic is given by

LMT (φ, θ) = T
SEE0 − SSE1(φ, θ)

SSE0
.

Here SSE0 =
∑T

t=1 ε̂2
t is the residual sum of squares from the regression of Yt on

x1,t, using LS.
Furthermore, SSE1(φ, θ) is the residual sum of squares from an auxiliary least
squares regression of ε̂t on −x1,t, −φig1,iUi,t (i = 1, . . . , p) and −θjh1,jVj,t (j =
1, . . . , q). By assumption, φig1,i and θjh1,j are all non-zero so that SSE1(φ, θ)
is identical to the residual sum of squares SSE1 =

∑T
t=1 η̂2

t with η̂t the residuals
from the regression of ε̂t on x1,t and x2,t. Thus, the LM-type test statistic is
given by LMT = T (SEE0 − SSE1)/SSE0.

(b) In this case the nonlinear model is given by

Yt =
p∑

i=1

(
ai + φifi(α

′Yt)
)
Yt−i +

q∑

j=1

(
bj + θjgj(β

′Yt)
)
Wj,t + εt.
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Similar to part (a), we first linearize the above model to obtain a first-order
approximation. Then, under H∗

0, we have

∂εt

∂α
=−(φ1g1,1U1,t + ∙ ∙ ∙ + φpg1,pUp,t),

∂εt

∂β
=−(θ1h1,1V1,t + ∙ ∙ ∙ + θqh1,qVq,t).

Denote these partial derivatives by Ut(φ) and Vt(θ) respectively. Then the
LM-type test statistic is given by

LM∗
T (φ, θ) = T

SEE0 − SSE∗
1(φ, θ)

SSE0
.

Here, SSE∗
1(φ, θ) is the residual sum of squares in the least squares regression

of ε̂t on −x1,t, Ut(φ) and Vt(θ), and SSE0 is given in part (a). Since Ut(φ)
and Vt(θ) are linear combinations of Ui,t (i = 1, . . . , p) and Vj,t (j = 1, . . . , q)
respectively, it follows that SSE1 = infφ,θ SSE∗

1(φ, θ). Hence, an appropriate
LM-type test statistic is given by supφ,θ LM∗

T (φ, θ).

5.4 (a) The simulation results in Tables 5.3 and 5.4 of the main text were obtained
using modified versions of two of the GAUSS-routines to accompany the paper
by Pitarakis (2006). For computation of the F

(1,2)
T test statistic in Table 5.3, use

can be made of the GAUSS, R, or MATLAB routines written by Bruce Hansen
which are publicly available at http://www.ssc.wisc.edu/~bhansen/.

There are substantial differences in empirical power between the case where the
test is implemented on a correctly specified model order, and the case where
the order p is estimated by either the AIC or the BIC method. The worst
performance is displayed when the lag length is estimated via the BIC method.
This is both under T = 200 and T = 500, and both DGPs. Some improvement
can be noticed as T increases, but still the empirical power results are poor.
Under DGP (i) and T = 200, AIC (BIC) selects in about 38% (24%) of the
cases the true order p0 = 2. For DGP (ii) and T = 200 these percentages are,
respectively 30% (AIC) and 15% (BIC). In general, however, BIC has a high
frequency of underfitting the true order.

(b) Comparing the empirical correct decision frequencies based on the BIC method
with the empirical power of the F

(1,2)
T test statistic in Table 5.3 of the main text

using estimated lag lengths, we note substantial improvements in power for the
penalty-based model selection approach under both sample sizes. Still, for DGP
(ii) these gains are far below the empirical power of the F

(1,2)
T test statistic using

the true model specification. The differences in performance of the AIC and
BIC methods may also be seen in the final selection of the SETAR model. For
instance, for DGP (ii) AIC (BIC) selects the “true” SETAR(2; 2, 2) model, with
d = 2, in about 35.6% (10.7%) of the 1,000 replications. So, for these models and
sample sizes, the use of the AIC-based specification strategy is recommended.
Note that by setting pmax = 6, gives a portfolio of pmax(pmax+1)/2+(pmax+1) =
28 models (21 nonlinear and 7 linear, including white noise) to select from.

Chapter 6

6.1 The proposed estimator of τ is defined as τ̃ = γ̂Y (1, 2)/σ2
εVar(Yt). The condition

τ4σ4
ε < 1/3 implies the condition for stationarity, causality and ergodicity of the pro-

cess {Yt, t ∈ Z}, i.e. τ2σ2
ε < 1. By ergodicity, we have limT→∞ γ̂Y (1, 2) = γY (1, 2) =

http://www.ssc.wisc.edu/~bhansen/.pdf
http://www.ssc.wisc.edu/~bhansen/.pdf
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τσ2
εσ2

Y . Hence, as T → ∞, τ̃ → τ a.s. Moreover, as an immediate result of Grahn
(1995, Thm. 3.1), the law of iterated logarithm (LIL) holds with O(ST ) order of
convergence, where ST = {T/ log log T}−1/2.

Now |τ̃−τ̂ | ≤ |τ̃−τ |+|τ̂−τ |. We know that |τ̂−τ | → 0 a.s. In this case a.s. convergence
is equivalent to L2 convergence in the space of continuous functions defined on the
interval [0, 1]. Hence, it is sufficient to prove that, as T → ∞,

∫ (
|τ̃ − τ | + |τ̂ − τ |

)2
dfY (y) → 0,

where fY (∙) is the pdf of {Yt, t ∈ Z}. Since ∫(τ̂−τ)2dfY (y) → 0 and ∫(τ̃−τ)2dfY (y) →
0 when T → 0, and applying the Cauchy–Schwarz inequality for ∫

(
|τ̃ − τ | + |τ̂ −

τ |
)2

dfY (y), the result holds. The order of convergence follows directly from the above
results and Theorem 3.1 of Grahn (1995).
Remark: For ease of reference, we present Theorem 3.1 below. To this end, it is
appropriate to represent the BL(p, q, k, r) process (6.27), with E(Yt) = 0, by the state
space representation

Yt = AYt−1 +
k∑

i=1

εt−iBYt−1 + Cεt, Yt = DYt, (∗)

where Yt = (Yt, Yt−1, . . . , Yt−h+1)′ with h = p ∨ r, D = (1, 0, . . . , 0)′ ∈ Rh, εt =
(εt, εt−1, . . . , εt−q)′ ∈ Rq+1, and the matrices

A︸︷︷︸
h × h

=














φ1 ∙ ∙ ∙ φp 0 ∙ ∙ ∙ 0
1 0 ∙ ∙ ∙ 0
...

. . .
. . .

...

0
. . .

. . . 0
...

. . .
. . .

...
0 ∙ ∙ ∙ 1 0














, Bi︸︷︷︸
h × h

=








τi1 ∙ ∙ ∙ τir 0 ∙ ∙ ∙ 0
0 ∙ ∙ ∙ 0
...

...
0 ∙ ∙ ∙ 0








, C︸︷︷︸
h × (q + 1)

=








1 ψ1 ∙ ∙ ∙ ψq

0 ∙ ∙ ∙ 0
...

...
0 ∙ ∙ ∙ 0








.

After this preparation, we can state the theorem as follows.

Let {Yt, t ∈ Z} be the BL process defined by (∗). If for some ν ∈ N the corres-
ponding sequence {εt, t ∈ Z} is a 2νkth order symmetric innovation sequence,
and moreover ρ(Γ2ν) < 1, where Γ2ν is a matrix uniquely determined by the
parameters of the BL process (see, e.g., the solution to Exercise 3.4(a)), then the
following assertions hold.

(i) There exists a strictly stationary, causal and ergodic solution {Yt, t ∈ Z} of
(∗) with E(Y 2ν

t ) < ∞. The unique strictly stationary solution is the first
component of the vector process {Yt, t ∈ Z} with

Yt =
∞∑

n=1

{ n∏

i=1

Ψ(t + 1 − i)
}
Cεt−n + Cεt,

where Ψ(t) = A +
∑k

i=1 εt−iBi and the infinite sum can be interpreted
either as an almost sure or L2ν limit.

(ii) To give the result concerning the asymptotics of the empirical mixed mo-
ments of the process {Yt, t ∈ Z}, we need the following definitions:
Let K = {0, k1, . . . , ki : k1 ≤ ∙ ∙ ∙ ≤ ki, 0 ≤ i ≤ ν − 1, kj ∈ N for 0 ≤ j ≤ i}
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denote the set of indices for identifying the several mixed moments of the
process up to the order ν. For ki = (0, k1, . . . , ki) ∈ K we further define
μk = E(Y0, Yk1 , . . . , Yki) and ηk,t = YtYt+k1 ∙ ∙ ∙Yt+ki − μk. Moreover, for

u ∈ [0, 1] we define the process of partial sums ST,k(u) =
∑[Tu]

t=1 ηk,t, and a
continuous version ξT,k(u) = ST,k(u) + (Tu − [Tu])ηk,[Tu]+1. Then for all
k ∈ N and for all γ = (γ1, . . . , γk)′ ∈ Rk and ki ∈ K (1 ≤ i ≤ k), we have

{
T−1/2

k∑

i=1

γiξT,k(u)
}

D
−→

C[0, 1]
{cγ , B(u)}, u ∈ [0, 1],

where {B(u), u ∈ [0, 1]} denotes the standard Brownian motion, and

cγ = lim
T→∞

E
[{ k∑

i=1

γiξT,k(1)
}2]/

T

exists with 0 ≤ c < ∞ and the LIL, i.e. {T log log T}−1/2
∑k

i=1 γiξT,k is
relatively compact in (C[0, 1], ‖ ∙ ‖∞).

6.2 (a) Taking expectations with the diagonal BL process, we have E(Yt) = τE(Yt−1εt−1).
Multiplying both sides of the BL process with εt and taking expectations, gives
E(Ytεt) = σ2

ε . Hence, E(Yt) = τσ2
ε . To get the variance of {Yt, t ∈ Z}, squaring

both sides of the BL process and taking expectations gives

E(Y 2
t ) = τ2E(Y 2

t−1ε
2
t−1) + σ2

ε .

Multiplying the expression for Y 2
t with ε2

t , and taking expectations gives

E(Y 2
t ε2

t ) = λ2E(Y 2
t−1ε

2
t−1) + 3σ4

ε ,

where λ = τσε The solution of this difference equation converges if λ2 < 1,
which follows from repeated substitution in which case we have

E(Y 2
t ε2

t ) = 3σ4
ε/(1 − λ2).

So E(Y 2
t ) = σ2

ε(2λ2 + 1)/(1 − λ2), and combined with E(Yt) gives the desired
expression for γY (0). For γY (1), first consider

E(YtYt−1) = τE(Y 2
t−1εt−1) = 2τ2E(ε2

t−1)E(Yt−2εt−2)

= 2τ2σ4
ε = 2E2(Yt)

so that γY (1) = E2(Yt) = σ2
ελ2. For the computation of lag ` autocovariances,

we have

E(YtYt−`) = τE(Yt−1εt−1εt−`), (` > 1),

= τE
(
(τYt−2εt−2 + εt−1)εt−1Yt−`

)

= τE(ε2
t−1Yt−`) = τ2σ4

ε .

So γY (`) = 0 for ` > 1. Hence,

ρY (`) =






1, ` = 0,
λ2(1 − λ2)/(1 + λ2 + λ4), ` = 1,
0, |`| ≥ 2.
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(b) The autocovariance structure of the diagonal BL process is very similar to that

of an MA(1) process Yt = εt + τεt−1 (|τ | < 1, {εt}
i.i.d.
∼ (0, σ2

ε,MA)) in the sense
that the autocovariances are all zero for lags |`| ≥ 2. Hence, an identification
problem arises.

By equating the first order autocorrelation ρY (1) of the diagonal BL process
with the corresponding expression of the MA(1) process, and considering the
invertibility condition |τ | < 1, it follows that

τ =
(1 + λ2 + λ4) −

√
1 + 2λ2 − λ4 + 10λ6 − 3λ8

2λ2(1 − λ2)
.

Similarly, by equating the corresponding expressions for γY (0), it follows that

σ2
ε,MA =

σ2
ε(1 + τ2)(1 − λ2)

1 + λ2 + λ4
.

This last expression can be used to define the penalty, say (σ2
ε,MA−σ2

ε)/σ2
ε , from

misclassifying a diagonal BL(0, 0, 1, 1) process as an MA(1) process.

Remark: To distinguish between the diagonal BL and the MA(1) model one
may, for instance, consider the ACF of the process {Y 2

t , t ∈ Z}. For an MA(1)
the ACF of {Y 2

t , t ∈ Z} is identified by the ACF as an MA(1) process. This can
be seen as follows

E(Y 2
t Y 2

t−`) = τ2E(τ2Y 2
t−2Y

2
t−`ε

2
t−1ε

2
t−2) + 3τ2σ4

εE(Y 2
t ) + σ2

εE(Y 2
t ) (∗)

by substituting twice for Y 2
t−1. For ` > 1, the first term on the right-hand side

can be written as τ4σ2
εE(Y 2

t−2Y
2
t−`ε

2
t−2). If we rewrite (∗) with t− 1 replacing t,

we obtain

E(Y 2
t−1Y

2
t−`) = τ2E(Y 2

t−2Y
2
t−`ε

2
t−2) + σ2

εE(Y 2
t−`).

Using the stationarity assumption, we have

E(Y 2
t−1Y

2
t−`) = τ2σ2

εE(Y 2
t Y 2

t−`+1) + (2τ2σ4
ε + σ2

ε)E(Y 2
t ).

Hence,

Cov(Y 2
t , Y 2

t−`) = τ2σ2
εCov(Y 2

t , Y 2
t−`+1) + (2τ2σ4

ε + σ2
ε)E(Y 2

t )

+ (τ2σ2
ε − 1)E2(Y 2

t )

= τ2σ2
εCov(Y 2

t , Y 2
t−`+1), (` > 1).

So, if we denote the ACF of Y 2
t by ρ

(2)
Y (`), we have ρ

(2)
Y (`) = τ2σ2

ερ
(2)
Y (` − 1),

` > 1. For ρ(2)(1), we consider

E(Y 2
t Y 2

t−1) = τ2E(Y 4
t−1ε

2
t−1) + σ2

εE(Y 2
t ).

Writing Y 4
t−1 in full and multiplying the resulting equation with ε2

t−1 gives

E(Y 2
t Y 2

t−1) = τ6σ2
εE(Y 4

t−2ε
4
t−2) + 18τ4σ4

εE(Y 2
t−2ε

2
t−2) + 15τ2σ6

ε + σ2
εE(Y 2

t ).

Finally, computing E(Y 4
t−2ε

4
t−2) and some algebra gives

ρ(2)(1) =
3λ2(2 + 3λ2 + 5λ4 + λ6 − 8λ8)
1 + 4λ2 + 40λ4 + 18λ6 − 54λ8

,
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provided λ2 < 1/3. Clearly, using the ACF, the process {Y 2
t , t ∈ Z} is identified

as an ARMA(1, 1) process when the true DGP of {Yt, t ∈ Z} is the diagonal
BL(0, 0, 1, 1) process. Hence, the ACF of the process {Y 2

t , t ∈ Z} can be used to
distinguish between the MA(1) process and the diagonal BL(0, 0, 1, 1) process.
To distinguish between the diagonal BL(0, 0, 1, 1) process and the MA(1) process,
one has to consider the third-order moment since it is not zero for the BL process.
In fact, the existence of the third and fourth moments is also required to derive
the asymptotic distribution of the sample ACVF of the process. Some more
algebra gives

E
(
Yt − μY

)3
= 2λ3σ3

ε

2τ3(4 + 5λ2)
1 − λ2

,

provided λ2 < 1. Note that the above expression is not in agreement with the
third central moment given by Granger and Andersen (1978a, p. 52). That is,
the factor σ3

ε is missing from equation (6.25) in their monograph. Moreover,

E
(
Yt − μY

)4
=

σ4
ε(3 + 9λ2 + 57λ4 + 93λ6 + 117λ8 + 135λ10)

(1 − λ2)(1 − 3λ4)
,

provided 3λ4 < 1. This expression differs a factor 3 with the fourth central
moment (6.26) given by Granger and Andersen (1978a, p. 53). This last result
may explain the high values of the coefficient of kurtosis in column 5 of Table 1
of Granger and Andersen (1978a); see also De Gooijer and Heuts (1987).

(c) From part (a), we know that E(Yt) = τσ2
ε . We also see that γY (0) is a function

of τ and σ2
ε . If we substitute γY (1)/σ4

ε for τ2 in γY (0), then γY (0) becomes a
quadratic equation in σ2

ε . Solving for σ2
ε , we then have

σ2
ε = 2−1[{γY (0) − γY (1)} ± {γ2

Y (0) − 6γY (0)γY (1) − 3γ2
Y (1)}1/2],

with the condition that ρY (1) = γY (1)/γY (0) < 0.1547. Substituting for γY (0)
in the above expression, we can show that

2λ4 + 2λ2 − 1 ≶ 0,

depending on whether the negative or positive solution of σ2
ε is chosen. For the

positive solution we have 2λ4 + 2λ2 − 1 < 0, which is a sufficient condition for
invertibility (Pham and Tran, 1981). The latter condition reduces to

|λ| < {(
√

3 − 1)/2}1/2 ≡ λ0 = 0.605.

Thus, we can find a region in the parameter space where the process is invertible.

(d) The following CLT will be used below.

Let {Zt, t ∈ Z} be a strictly stationary sequence of m-dependent random
variables with E(Zt) = 0, and autocovariance function Cov(Zt, Zt+`) 6= 0,

then 1/
√

T
∑T

t=1 Zt
D
−→N

(
0,
∑m

`=−m Cov(Zt, Zt+`)
)
.

First, however, we focus on the mean and autocovariance of {Ut,m} and {Wt,m}.
It is easy to see that E(Ut+`,m) = σελ ∀`, and the lag ` autocovariance of {Ut,m}
is given by

E(Ut,mUt+`,m) =






σ2
ε + 3σ2

ε

∑m
j=1 λ2j , ` = 0,

2σ2
ελ2, |`| = 1,

σ2
ελ2, |`| ≥ 2.

(∗∗)
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Similarly, we have E(Wt+`,m) = 0 ∀`. Moreover, for a fixed m, the lag ` autoco-
variance of {Wt,m} is given by

E(Wt,mWt+`,m) =

{
3σ2

ε

∑∞
j=m+1 λ2j , ` = 0,

0, |`| ≥ 1.
(∗ ∗ ∗)

Next, for a fixed m, we define the process Xt = Ut,m−μU , where μm = E(Ut,m).
Then {Xt, t ∈ Z} is a sequence of stationary m-dependent random variables.
Further, we have E(Xt) = 0, and from (∗∗)

E(Xt, Xt+`) = Cov(Ut,m, Ut+`,m) =






σ2
ε(1 − λ2 + 3

∑m
j=1 λ2j), ` = 0,

σ2
ελ2, |`| = 1,

0, |`| ≥ 2.

Moreover,

T−1/2
T∑

t=1

Xt = T 1/2(UT − μU )

and
m∑

`=−m

Cov(Xt, Xt−`) = σ2
ε

(
1 + λ2 + 3

m∑

j=1

λ2j
)
.

Therefore, the process {Xt, t ∈ Z} satisfies the conditions of the CLT. The final
part of the proof follows directly from the above results.

(e) Using Qm,T and Rm,T defined by the hint, we have
√

T (YT −μY ) = Qm,T +Rm,T .
For a fixed m, we have from (∗ ∗ ∗) that

Var(Rm,T ) = T−1
T∑

t,s=1

Cov(Wt,m,Ws,m)

= T−1
T−1∑

`=−(T−1)

(T − |`|)Cov(Wt,m,Wt+`,m)

= 3σ2
ε

∞∑

j=m+1

λ2j .

Therefore, limm→∞ Var(Rm,T ) = 0. Hence, by Chebychev’s inequality, we have

Rm,T
P
−→ 0 uniformly in T . It then follows that the asymptotic distribution of√

T (YT − μY ) is the same as that of Qm,T , which has been shown in part (c) to
converge to a normal distribution as T → ∞. Using the autocovariances given in
part (a), the variance of

√
T (YT −μY ) converges to γY (0)+2γY (1), as m → ∞,

which is identical to σ2
ε(1 + 3λ2 − λ4)/(1 − λ2).

Thus, let {Yt, t ∈ Z} be a stochastic process defined by Yt = τYt−1εt−1 +εt with
zero-mean Gaussian white noise. Assume that the model is invertible, i.e. the
condition |λ| < 0.605 holds. Furthermore, without loss of generality, let σ2

ε = 1.
Then, in view of the above results, the asymptotic distribution of τ̂ is given by

√
T (τ̂ − τ)

D
−→ N

(
0, (1 + 3τ2 − τ4)/(1 − τ2)

)
,

which completes the proof. In closing, we refer to Exercise 6.5 of the main text
where we consider another moment estimator of τ when σ2

ε is unknown.
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6.3 (a) From the log-quasi conditional likelihood, the first order derivative with respect
to θ becomes

G(y, θ) =
∂QT (θ)

∂θ
= −

1
2

∑

t

∂σ2
t

∂θ

{ 1
σ2

t

−
(Yt − μt)2

σ4
t

}
+
∑

t

∂μt

∂θ

(Yt − μt)
σ2

t

.

Hence,

g(θ̃, θ) = E[G(y, θ)|θ̃] = −
1
2

∑

t

∂σ2
t

∂θ

{ 1
σ2

t

−
σ̃2

t + (μ̃t − μt)2

σ4
t

}

+
∑

t

∂μt

∂θ

(Yt − μt)
σ2

t

,

where μ̃t = μ(Yt−1, . . . , Yt−p, θ̃) and σ̃2
t = σ2(Yt−1, . . . , Yt−p, θ̃). Thus,

∂g(θ̃, θ)

∂θ̃
= −

1
2

∑

t

{
−

1
σ4

t

(∂σ̃2
t

∂θ̃

)
−

2(μ̃t − μt)
σ4

t

(∂μ̃t

∂θ̃

)}(∂σ2
t

∂θ

)′

+
∑

t

1
σ2

t

(∂μ̃t

∂θ̃

)(∂μt

∂θ

)′
.

The Fisher information matrix is given by

I(θ) ≡
∂g(θ̃, θ)

∂θ̃

∣
∣
∣
θ̃=θ

=
1
2

∑

t

1
σ4

t

(∂σ2
t

∂θ

)(∂σ2
t

∂θ

)′
+
∑

t

1
σ2

t

(∂μt

∂θ

)(∂μt

∂θ

)′
.

Substituting the expressions for G(y, θ) and ∂g(θ̃, θ)/∂θ̃ in the approximate
expression of G(y, θ) it follows that

∑

t

1
2

1
σ4

t

∂σ2
t

θ

{(∂σ2
t

∂θ

)′
(θ̃ − θ) + σ2

t − (Yt − μt)
2
}

+
∑

t

1
σ2

t

∂μt

∂θ

{(∂μt

∂θ

)′
(θ̃ − θ) − (Yt − μt)

}
= 0.

Rearranging terms gives expression (6.44) of the main text.

(b) Recall Zt =

(
∂σ2

t /∂θ
∂μt/∂θ

)

. The partial derivative of μt with respect to θ are

given by

∂μt

∂φ
(i)
0

= I
(i)
t (i = 1, 2),

∂μt

∂φ
(i)
j

= I
(i)
t Yt−j (i = 1, 2; j = 1, . . . , pi),

and ∂μt/∂α
(i)
j = 0 (i = 1, 2; j = 0, 1, . . . , qi). The partial derivative of σ2

t with
respect to θ are given by

∂σ2
t

∂φ
(u)
0

= −2
2∑

i=1

I
(i)
t

( qi∑

j=1

α
(i)
j εt−jI

(u)
t−j

)
(u = 1, 2),

∂σ2
t

∂φ
(u)
v

= −2
2∑

i=1

I
(i)
t

( qi∑

j=1

α
(i)
j εt−jYt−j−vI

(u)
t−j

)
(u = 1, 2; v = 1, . . . , pi),

∂σ2
t

∂α
(i)
0

= I
(i)
t (i = 1, 2),

∂σ2
t

∂α
(i)
j

= ε2
t−jI

(i)
t (i = 1, 2; j = 1, . . . , qi).
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Hence, stacking up by t, an explicit expression for Z = (Z1, . . . ,ZT )′ follows
directly from Zt.

6.4 (a) Clearly, zt = (∇θht)h
−1
t = 0′ and hence E[V(εt−`)z′t] = 0 and Ω = Υ =

E[wtw′
t]. Consequently,

Λ(`) = E[∇U(εt)] ⊗ E[V(εt−`)w
′
t] and Δ(`) = E[U(εt)εt] ⊗ E[V(εt−`)w

′
t].

Observe that Λ(`) = 0 if the condition E[∇U(εt)] = 0 holds. In that case
the asymptotic null distribution of

√
T − ` ρ̂(`) will be free from estimation

uncertainty. Now when P = Q = 1, and
(
u1(εt), v1(εt−`)

)
= (εt, εt−`), we

have E[∇U(εt)] = E[U(εt)εt] = (1, . . . , 1)′. This implies Λ(`) = Δ(`) =
E[V(εt−`)w′

t], and A(`, `′) = −Λ(`)Ω−1Λ′(`′). So, after some simple rewrit-
ing, we obtain the (i, j)th element of the asymptotic variance-covariance matrix
Σ(`) as specified in part (a).

(b) Assume, we have a residual time series {ε̂t}T
t=1. Let ρ̂ =

(
ρ̂ε(1), . . . , ρ̂ε(M)

)′

with ρ̂ε(`) =
∑T

t=`+1(ε̂t − ε̂)(ε̂t−` − ε̂)/
∑T

t=1(ε̂t − ε̂)2 and ε̂ = T−1
∑T

t=1 ε̂t.
Then, given the results in part (a) and Section 6.3 of the main text, the large
sample distribution of ρ̂

√
T is normal with mean 0 and variance-covariance

matrix Σ = IM − σ−2
ε m′V−1m. A diagnostic test statistic for residual serial

correlation is given by

QT (M) = T ρ̂′Σ̂−ρ̂,

where Σ̂− is a consistent estimate of Σ−, with Σ− a generalized inverse of Σ.
Under the null hypothesis of no residual autocorrelation, QT (M) is asymptot-
ically χ2

M distributed, as T → ∞. Of course, in practice V and m need to be
replaced by consistent estimates. Then, under the null hypothesis of no serial
correlation, QT (M) is asymptotically distributed as a χ2

r random variable with
r = rank(V).

Depending on the type of nonlinear process, some algebra is required to derive
explicit expressions of V and m = {(mi,j)} (i, j = 1, 2). As an illustration, con-
sider a strictly stationary time series {Yt, t ∈ Z} generated by the SETAR(2; 1, 1)
model

Yt = φ1Y
−
t−1 + φ2Y

+
t−1 + εt,

where Y −
t−1 = Yt−1I(Yt−1 ≤ 0) and Y +

t−1 = Yt−1I(Yt−1 > 0), and {εt}
i.i.d.
∼

N (0, σ2
ε). Then we have

V =

(
E(Y −

t−1)
2 0

0 E(Y +
t−1)

2

)

,

mi,j = σ−2
ε E(εtY

−
t+i−1)

E
(
εt(Y

−
t+j−1)

2
)

E(Y −
t−1)2

+ σ−2
ε E(εtY

+
t+i−1)

E
(
εt(Y

+
t+j−1)

2
)

E(Y +
t−1)2

.

Consistent estimators of E(εtY
±
t+i−1) and E2(Y ±

t−1) are T−1
∑T

t=1(Yt −φ1Y
−
t−1 −

φ2Y
+
t−1)Y

±
t+i−1 and T−1

∑T
t=1(Y

±
t−1)

2, respectively.

6.5 Table 6.1 contains various simulation results. Observe, that when estimates of τ are
near the boundary τ < (1/105)1/8 = 0.5589 the number of effective MC replications
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decreases considerably. Overall the CLS estimator τ̂ performs better than the es-
timator τ̃ , both in terms of higher coverage probabilities and shorter 95% confidence
intervals (CIs). Note that for τ = ±0.6 the expression for Var(τ̃) results in larger CIs
than the CIs obtained for τ = ±0.4. This may be due to the fact that the formula for
Var(τ̃) is based on the following approximation

1
T

Var(
∑

t

Yt) = Var(Yt) + 2
4∑

i=1

Cov(Yt+i, Yt) + o(λ2),

assuming that Cov(Yt+`, Yt) = o(λ2) for ` > 4. So the approximation is based on only
a few autocovariance terms.

The estimation results can be computed by using a converted version of the MATLAB
function BL CLS.m given in the file Example 6-5.zip; see also below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 6.5
% File: exercise_6-5.zip
%
% BL estimation with estimators beta-widehat and beta-tilde.
%
% BL model: Y_{t} = beta * eps_{t-1} * Y_{t-2} + eps_{t},
% with eps_{t} ~ N(0,1) distributed.
%
% OUTPUT:
% CovCLS = Coverage probability of beta-widehat estimator
% CovT = Coverage probability of beta-tilde estimator
% LengthCLS = Average length 95% CI: beta-widehat estimator
% LengthT = Average length 95% CI: beta-tilde estimator
%
% Reference:
% Giordano, F. and Vitale, C. (2003).
% CLS asymptotic variance for a particular relevant bilinear time
% series model.
% Statistical Methods & Applications, 12(2), 169-185.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = 500;
m = 100;
beta = 0.5;
iter = 1000;
sum1 = 0;
sum2 = 0;
VY = 1/(1-beta*beta); % Var[Y_{t}]

for it=1:iter
eps = normrnd(0,1,n+m,1);
y = zeros(n+m,1);
for i=3:n+m

y(i) = beta*eps(i-1)*y(i-2)+eps(i);
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end

data=y(m+1:m+n);

% Start: CLS estimation
y2 = data.*data;
y2lag = y2(3:n);
yy = y2(1:n-2);
X = [ones(size(y2lag)) yy];
a = X\y2lag; % a(1) is estimated LS variance of eps_{t}

num12 = 0;
den = 0;
num113 = 0;
num014 = 0;
for i=1:n-4

num12 = num12 + data(i+2)*data(i+1)*data(i);
den = den + data(i)*data(i);

end
c0 = den/(n-4);

bestgr = (num12/(a(1)*den));
cond1 = bestgr^8;
if (cond1 < (1/105))

sum1 = sum1+1;
bgr(sum1,1) = bestgr;
biasgr(sum1,1) = bestgr-beta;
varestgr(sum1,1) = (1+22*bestgr^2+9*bestgr^2-6*bestgr^2*VY)/(VY);

end

besttil = num12/(n*VY);
cond2 = besttil^8;
if (cond2 < (1/105))

sum2 = sum2+1;
btil(sum2,1) = besttil;
biastil(sum2,1) = besttil-beta;
termtil = (1-3*besttil^4)*(1-15*besttil^6);
vartilde(sum2,1) = (1-besttil^2)*(183*besttil^6+...

42*besttil^4+14*besttil^2+1)/termtil;
end

end

meanbgr = mean(bgr);
stdbestgr = mean(sqrt(varestgr))/sqrt(n);

meanbtil = mean(btil);
stdbesttil = mean(sqrt(vartilde))/sqrt(n);

% Percentage of times beta is in the 95% CI
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sum3 = 0;
for i=1:sum1

lb1(i) = bgr(i,1) - 1.96* sqrt(varestgr(i,1))/sqrt(n);
ub1(i) = bgr(i,1) + 1.96* sqrt(varestgr(i,1))/sqrt(n);
lengthgr(i) = ub1(i)-lb1(i);
if (beta>=lb1(i) && beta<=ub1(i))

sum3 = sum3+1;
end

end
CovCLS = (sum3/sum1)*100;
LengthCLS = mean(lengthgr);

sum4 = 0;
for i=1:sum2

lb2(i) = btil(i,1) - 1.96* sqrt(vartilde(i,1))/sqrt(n);
ub2(i) = btil(i,1) + 1.96* sqrt(vartilde(i,1))/sqrt(n);
lengthtil(i)=ub2(i)-lb2(i);
if (beta>=lb2(i) && beta<=ub2(i))

sum4 = sum4+1;
end

end
CovT = (sum4/sum2)*100;
LengthT = mean(lengthtil);

Table 6.1: Some summary measures for the estimators τ̂ (CLS) and τ̃ of Exercise 6.5;
T = 1,000, 1,000 MC replications, and a nominal 95% coverage probability.

τ̂ (CLS estimator) τ̃

Effective number Coverage Average Effective number Coverage Average
τ of replicates (in %) length of replicates (in %) length

-0.6 539 64.75 0.25 450 62.89 0.41
-0.4 982 95.62 0.25 957 87.27 0.28
-0.1 1,000 97.20 0.14 1,000 95.50 0.13
0.1 1,000 96.00 0.14 1,000 94.20 0.13
0.4 978 95.09 0.25 959 87.73 0.28
0.6 538 60.59 0.25 486 65.61 0.40

Remark: No closed form expression for the asymptotic variance of the CLS of τ
in model (6.35) exists when the errors are not normally distributed. Bootstrapping
methods may be used for this purpose. However, bootstrapping requires sampling
from the estimated errors, and refitting the BL model, which can be computationally
demanding. Another approach is to use the profile empirical likelihood method. Using
this method and adopting model (6.35) with εt

i.i.d.
∼ N (0, 1) and t(8), Feng et al.

(2013) present empirical coverage probabilities for four proposed confidence intervals
and the bootstrap confidence interval. Provided there is sufficient computing time,



82 Solutions

Table 6.2: Empirical coverage probabilities for the confidence intervals I
(1)
α , I

(2)
α , I

(3)
α

proposed by Feng et al. (2013), and the bootstrap interval I∗α with levels α = 0.9 and 0.95,
1,000 random samples.

(T, β, εt) I∗
0.9 I

(1)
0.9 I

(2)
0.9 I

(3)
0.9 I∗

0.95 I
(1)
0.95 I

(2)
0.95 I

(3)
0.95

(100, 0.1,N ) 0.949 0.878 0.871 0.861 0.990 0.935 0.929 0.930
(100, 0.2,N ) 0.912 0.872 0.874 0.864 0.971 0.934 0.931 0.929
(100, 0.3,N ) 0.851 0.880 0.875 0.869 0.919 0.930 0.931 0.926
(100, 0.4,N ) 0.830 0.879 0.884 0.869 0.830 0.931 0.931 0.923

the reader is invited to replicate their MC simulation results for the case n = 100
and τ = 0.1, . . . , 0.4, using the functions in the file exercise 6-5-remark.r. Using these
functions, Table 6.2 reports some empirical coverage probabilities. Compare these
results with those given by Feng et al. (2013, Table 1, first 4 top rows).

6.6 (a)+(b) (First part)
Note that if ρ̂Y (1) ≥ 0.1547 (see, e.g., the solution to Exercise 6.2(c)) no real
solution exists for τ̂∗, and hence the method of moments fails to yield an estim-
ator for τ . The third column of Table 6.3 shows the moment estimates τ̂∗ aver-
aged over 1,000 MC replications. Columns 4 and 5 show the bootstrap moment
estimator and its corresponding standard deviation, both based on B = 1, 000
bootstrap (BS) replicates. These latter results were obtained as follows.

(i) Compute the mean-deleted residuals {ε̃t = ε̂t−ε̂}T
t=1, where ε̂ = T−1

∑T
t=1 ε̂t

and

ε̂t = Yt − τ̂∗Yt−1ε̂t−1, (ε̂0 = 0).

(ii) Draw (with replacement) bootstrap pseudo residuals {ε∗t }
T
t=1 from the EDF

of the centered residuals ε̃t and generate the bootstrap sample {Y ∗
t }

T
t=1 as

Y ∗
t = ε∗t + τ̂∗Y ∗

t−1ε
∗
t−1.

(iii) Repeat steps (i) – (ii), B times. For each series {Y ∗
t } obtain the bootstrap

estimates of the moment estimator.
(iv) Let {τ̂∗,(b)}B

b=1 denote the set of bootstrap moment estimates. Calculate
their sample mean and sample standard deviation as

τ̂
∗
BS =

1
B

B∑

b=1

τ̂∗,(b) and σ̂τ̂∗
BS

=
( 1

B − 1

B∑

b=1

(
τ̂∗,(b) − τ̂

∗
BS

)2)1/2

.

The CLS estimate τ̂ of τ follows from minimizing
∑T

t=1 ε2
t (τ), where εt(τ) =

Yt +
∑∞

j=1(−1)jτ jYt−j

∏j
k=1 Yt−k. The estimating equation is given by ST (τ) =

∑T
t=1 et(b)e′t(b) = 0, where e′t(b) =

∑t
j=1(−1)jjτ j−1Yt−j

∏j
k=1 Yt−k. Column 6

shows the CLS estimates averaged over 1,000 MC replications. For comparison
purposes, we have executed the same bootstrap procedure as above for the CLS
estimates. The simulation results, denoted by τ̂BS and σ̂τ̂BS

, are summarized in
columns 7 – 8 of Table 6.3. It is clear that the bootstrap CLS estimate τ̂BS is
close to its corresponding estimate τ̂ for all values of |τ | and both sample sizes.
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Table 6.3: Simulation and bootstrap results for the moment estimator τ̂∗ of Exercise 6.6,
and for the CLS estimator τ̂ ; 1,000 MC replications, and B = 1,000 bootstrap replicates.

Moment estimator CLS estimator

T τ τ̂
∗

τ̂
∗
BS σ̂τ̂∗

BS
τ̂ τ̂BS σ̂τ̂BS

500 -0.4 -0.3737 -0.2847 0.1924 -0.3975 -0.3951 0.0227
-0.2 -0.2060 -0.2188 0.0734 -0.2002 -0.1992 0.0280
0.2 0.2042 0.2045 0.0648 0.1995 0.2003 0.0279
0.4 0.3735 0.3034 0.1552 0.3958 0.3950 0.0228

1,000 -0.4 -0.3866 -0.3329 0.1459 -0.3976 -0.3972 0.0144
-0.2 -0.2027 -0.2054 0.0449 -0.1996 -0.1997 0.0184
0.2 0.2048 0.2087 0.0472 0.2001 0.2001 0.0182
0.4 0.3917 0.3242 0.1626 0.3986 0.3982 0.0134

Note that there is less agreement between the bootstrap moment estimates τ̂
∗
BS

and τ̂
∗

for τ = ±0.4.

Remark: If σ2
ε is known, and assuming |λ| = |τσε| < 0.605, the moment estim-

ator has the same asymptotic distribution as given in Exercise 6.2(e). When,
however, σ2

ε is unknown and assuming |λ| < 0.605, Kim et al. (1990) show that
the moment estimator τ̂∗ is such that, as T → ∞,

√
T (τ̂∗ − τ)

D
−→ N (0, β′Σ∗β),

where

β = (2σ2
ε)−1




2

−τ{1 + (1 − 2λ2 + 4λ4)(1 − 4λ2 + 8λ6 + 4λ8)−1/2}
τ{1 + 3(1 + 2λ2)(1 − 4λ2 + 8λ6 + 4λ8)−1/2}



 ,

and Σ∗ is a 3 × 3 symmetric matrix whose elements are

σ∗
11 = σ2

ε(1 + 3λ2 − λ4)/(1 − λ2),

σ∗
12 = 4σ3

ελ(1 + 4λ2 + λ4)/(1 − λ2),

σ∗
13 = 2σ3

ελ(2 + 7λ2 + 3λ4 + 6λ6)/(1 − λ2),

σ∗
22 = 2σ4

ε(1 + 15λ2 + 18λ4 + 44λ6 + 42λ8 − 102λ10)/(1 − λ2)3(1 − 3λ4),

σ∗
23 = σ4

ελ2(30 + 106λ2 + 239λ4 + 159λ6 − 132λ8)/(1 − λ2)2,

σ∗
33 = σ4

ε(1 + 23λ2 + 80λ4 + 76λ6 − 84λ8 − 120λ10 − 216λ12)/(1 − λ2)(1 − 3λ4).

Second part
Table 6.4 shows the asymptotic standard deviation of the moment estimator
τ̂∗ calculated on the basis of the above results, with σ2

ε = 1. We see that
for τ = ±0.2 and T = 1, 000 the results are almost identical to the bootstrap
estimates of the standard deviation of the moment estimator given in Table 6.3,
column five. However, for τ = ±0.4 the results in these two tables do not match
very well. Definitely, more observations are needed before the bootstrap method
is asymptotically valid for the moment estimator.

The following two MATLAB codes can be used to replicate the results in Tables
6.3 and 6.4.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 6.6, first part
% File: exercise_6-6.m (contains first and second part)
%
% MC and BS results for the moment estimator and the LS estimator.
%
% BL model: Y_{t} = beta * eps_{t-1} * Y_{t-2} + eps_{t},
% with eps_{t} ~ N(0,1) distributed.
%
% MM = Method of moments estimator,
% 2mean(Y)/[(g0-g1) + (g0^{2}-6g0g1-3*g1^2)^{1/2}]
% LS = Least squares estimator
% BS = Bootstrap estimator
%
% totestm = [LS, MM, Bootst MM, Bootstr LS;
% std.LS (no BS),std. MM (no BS),std. Bootst MM,std. Bootstr LS]
% table = Results for MM and LS estimators, as shown in Table
% 6.2 of the Solutions Manual.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s = RandStream('mcg16807','Seed',0); % Set the seed
RandStream.setGlobalStream(s)

x(1) = 0;
y = zeros(1000);
nboot = 1000;
sumMM = 0;
nrep = 1000;
n = 1100;
b = 0.4;

% True percentage points of Normal distribution
p = [0.01 0.025 0.05 0.1 0.203 0.305 0.4 0.5 ...

0.6 0.695 0.797 0.9 0.95 0.975 0.99];
z = norminv(p,0,1);

t = [-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 ...
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2];

%%%%%%%%% MM estimator %%%%%%%%%%%%%
for jrep = 1:nrep % Start replications

r = normrnd(0,1,1,n+1);
for i = 2:n % Generation of X's

x(i) = b*x(i-1)*r(i-1)+r(i);
end
y = x(101:n); % 100 observations for warming-up
ny = length(y);
avgy = mean(y); % Calculation of moments
vary = var(y)*(ny-1)/ny;
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sum = 0;
for i = 1:ny-1

sum = sum+(y(i)-avgy)*(y(i+1)-avgy); % Lag 1 sample ACVF
end
covy = sum/ny;

ry = covy/vary;
if (ry < 0.1547)

sumMM = sumMM+1;
bhead = (2*avgy)/((vary-covy)+sqrt(vary^2-6*vary*covy-3*covy^2));

bMM(sumMM) = bhead; % The MM estimate
end

%%%%%%%%%%%% LS %%%%%%%%%%%%%%%%%%%%
% Initialization

nnLS = 0;
n1 = ny-1;
bLS = b;
b0 = 0;

%
% Calculation of LS estimate

dbc = b0-bLS;
for uu = 1:100

if abs(dbc)> 0.00001
b0 = bLS;
nnLS = nnLS+1;

%% Generation of e's
e(1) = y(1);
for j = 2:ny

e(j) = y(j)-b0*y(j-1)*e(j-1);
end

%% Generation of w's
w(1) = 0;
for j = 2:ny

w(j) = e(j-1)*y(j-1)-b0*w(j-1)*y(j-1);
end

%% Computation of delta bLS
suma = 0;
sumb = 0;
for i = 1:ny

suma = suma+e(i)*w(i);
sumb = sumb+w(i)^2;

end
dbc = suma/sumb;

%% The improved LS estimate
bLS = b0+dbc;

end
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end % end uu=1:100
bestLS(jrep) = bLS;

end % end replications j=1:nrep NO BOOTSTRAPPING

betaMM = mean(bMM); % Overall mean MM estimator
StdbetaMM = sqrt(var(bMM)); % Overall standard dev
betaLS = mean(bestLS);
StdbetaLS = sqrt(var(bestLS)); % Overall std dev LS

%%%%%%%%%%%%%%%%%%%% Bootstrapping MM estimator %%%%%%%%%%%%%%%
res(1) = y(1);
resLS(1) = y(1);
for j = 2:ny

res(j) = y(j)-betaMM*y(j-1)*res(j-1);
resLS(j) = y(j)-betaLS*y(j-1)*resLS(j-1);

end
ares = mean(res);
aresLS = mean(resLS);

for i = 1:ny
ecen(i) = res(i)-ares;
ecenLS(i) = resLS(i)-aresLS;

end
id = ceil(rand(ny,nboot)*ny); % Generate a matrix of integers

% that range from 1 to ny to use
% as indices into the centered residuals

bstres = ecen(id); % Use this index to 'sample' from the
% centered residuals

bstresLS = ecenLS(id);

xst = zeros(ny,nboot);
xstLS = zeros(ny,nboot);

for j = 1:nboot
xst(1,j) = bstres(1,j);
xstLS(1,j) = bstresLS(1,j);
for i = 2:ny

xst(i,j) = bstres(i,j)+betaMM*xst(i-1,j)*bstres(i-1,j);
xstLS(i,j) = bstresLS(i,j)+betaLS*xstLS(i-1,j)*bstresLS(i-1,j);

end
end

axst = mean(xst);
vxst = var(xst)*(ny-1)/ny;

for j = 1:nboot
xx = (xst(:,j)-axst(j));
xx0 = xx(1:ny-1);
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xx1 = xx(2:ny);
cxst(j) = xx0'*xx1/ny;
rxst(j) = cxst(j)/vxst(j); % Lag 1 autocorrelation

end

nb = 0;
for j = 1:nboot

if rxst(j) < 0.1547 % MM method fails if rxst > 0.1547
% (no real solution)

nb = nb+1; % Bootstrap sample size
bhst(j) = 2*axst(j)/((vxst(j)-cxst(j))+sqrt(vxst(j)^2 ...

-6*vxst(j)*cxst(j)-3*cxst(j)^2));
end

end

% Computation of BS sample mean and variance of the MM estimator
betaBSMM = mean(bhst);
StdBSMM = sqrt(var(bhst)*(nb-1)/nb);

%%%%%%%%%%%%%%%%% Bootstrapping LS estimator %%%%%%%%%%%%%%%
%% Computation of BS LS estimate

for jj = 1:nboot
% Initialization

nn = 0;
n1 = ny-1;
bBLS = b+0.1;
b0B = 0;

% Calculation of LS estimate
for uu = 1:100
if abs(b0B-bBLS)> 0.00001

b0B = bBLS;
nn = nn+1;

%% Generation of e's
e(1,jj) = xstLS(1,jj);
for j = 2:ny

e(j,jj) = xstLS(j,jj)-b0B*xstLS(j-1,jj)*e(j-1,jj);
end

%% Generation of w's
w(1,jj) = 0;
for j = 2:ny
w(j,jj) = e(j-1,jj)*xstLS(j-1,jj)-b0B*w(j-1,jj)*xstLS(j-1,jj);

end
%% Computation of delta bLS

suma = 0;
sumb = 0;
for i = 1:ny

suma = suma+e(i,jj)*w(i,jj);
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sumb = sumb+w(i,jj)^2;
end
dbc = suma/sumb;

%% The improved LS estimate
bBLS = b0B+dbc;

end
end % end of loop uu=1:1000

bestBBLS(jj) = bBLS;
end % end of loop jj=1:nboot

% Computation of BS LS estimate sample mean and std. dev.
betaBSLS = mean(bestBBLS);
StdBSLS = sqrt(var(bestBBLS)*(nb-1)/nb);

%%%%%%%%%%%% Bootstrap MM percentages %%%%%%%%%%%
nc = zeros(15,1);
nh = zeros(23,1);

for k = 1:nboot % betaMM = No BS
zb(k) = (bhst(k)-betaMM)/StdBSMM; % bhst = BS results
for i = 1:15

if zb(k) <= z(i)
nc(i) = nc(i)+1;

end
end
for j = 1:23

if zb(k) <= t(j)
nh(j) = nh(j)+1;

end
end

end
for i = 1:15

bcdfMM(i) = nc(i)/1000; % Approximate CDF
end
for j = 1:23

bfrqMM(j) = nh(j)/1000; % Relative frequency
end

%%%%%%%%%%%% Bootstrap LS percentages %%%%%%%%%%%
nc = zeros(15,1);
nh = zeros(23,1);

for k = 1:nboot % betaMM = No BS
zb(k) = (bestBBLS(k)-betaLS)/StdBSLS; % bhstLS = BS results LS

for i = 1:15
if zb(k) <= z(i)

nc(i) = nc(i)+1;
end

end
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for j = 1:23
if zb(k) <= t(j)

nh(j) = nh(j)+1;
end

end
end
for i = 1:15

bcdfLS(i) = nc(i)/1000; % Approximate CDF
end
for j = 1:23

bfrqLS(j) = nh(j)/1000; % Relative frequency
end

table = [betaMM,betaBSMM,StdBSMM,betaLS,betaBSLS,StdBSLS];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 6.6, second part
% File: exercise_6-6.m (contains first and second part)
%
% Computation of asymptotic standard deviation (sdMM) of the
% MM estimator tau^{*} based on Kim et al. (1990).
%
% Reference:
% Kim, W.K., Billard, L., and Basawa, I.V. (1990).
% Estimation for the first-order diagonal BL time series model.
% Journal of Time Series Analysis, 11(3), 215-229.
% DOI: 10.1111/j.1467-9892.1990.tb00053.x.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = 1000; % sample size
se = 1;
tau = 0.4; % parameter
lam = tau*se;
s11 = (se^2)*(1+3*lam^2-lam^4)/(1-lam^2);
s12 = 4*(se^3)*lam*(1+4*lam^2+lam^4)/(1-lam^2);
s13 = 2*(se^3)*lam*(2+7*lam^2+3*lam^4+6*lam^6)/(1-lam^2);
s22 = 2*(se^4)*(1+15*lam^2+18*lam^4+44*lam^6+42*lam^8- ...

102*lam^(10))/(((1-lam^2)^3)*(1-3*lam^4));
s23 = (se^4)*(lam^2)*(30+106*lam^2+239*lam^4+159*lam^6- ...

132*lam^8)/(1-lam^2)^2;
s33 = (se^4)*(1+23*lam^2+80*lam^4+76*lam^6-84*lam^8- ...

120*lam^(10)-216*lam^(12))/((1-lam^2)*(1-3*lam^4));
SS = [s11 s12 s13; s12 s22 s23; s13 s23 s33];

b1 = se^(-2);
b2 = -tau*(2*se^2)^(-1)*(1+(1-2*lam^2+4*lam^4)* ...

(1-4*lam^2+8*lam^6+4*lam^8)^(-1/2));
b3 = tau*(2*se^2)^(-1)*(1+3*(1+2*lam^2)* ...

(1-4*lam^2+8*lam^6+4*lam^8)^(-1/2));
beta = [b1 b2 b3];
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Table 6.4: Asymptotic standard deviation of the moment estimator τ̂∗ for the case τ =
±0.1, . . . ,±0.4, and T = 500 and 1,000.

τ

T ±0.1 ±0.2 ±0.3 ±0.4

500 0.0488 0.0626 0.0927 0.1675
1,000 0.0345 0.0442 0.0655 0.1184

sdMM = sqrt(beta * SS * beta'/n);

6.7 For τ = 0.6 and σ2
ε = 1 the condition for asymptotic normality of the CLS estimator

τ̂ of τ is violated (λ8 = τ8σ8
ε > 1/105). In this case, no results on the asymptotic

distribution or the rate of convergence of τ̂ are available, apart from the fact that τ̂ is
still strongly consistent, because for proving consistency only τ4σ4

ε < 1/3 is required.
Figure 6.1 shows the histograms of

√
T (τ̂ − τ) and

√
T (σ̂ 2

ε − σ2
ε) for T = 250 and

T = 1,000.

(a) From Figures 6.1(a) and (c) and the corresponding summary statistics, we ob-
serve that for both values of T the estimator τ̂ is far from normally distributed.
In fact, as T increases the non-normal feature of the simulated data set increases.
However, from both the mean and the median values we see that the estimator
is still consistent. Note the negative mean and median of the distribution of√

T (τ̂ − τ). This was observed earlier in Example 6.5 of the main text.

(b) Figures 6.1(b) and (d) and the corresponding summary statistics indicate that
for both values of T the estimator σ̂2

ε is not normally distributed. However, as
can be seen from the values of the skewness, kurtosis, and the Jarque–Bera (JB)
normality test, the non-normal features are less prominent than those reported
in Figures 6.1(a) and (c). The histograms and the summary statistics indicate
the consistency of σ̂ 2

ε , but the estimator overestimates the parameter σ2
ε .

Remark: Recently, Tan and Wang (2016) propose the LASSO (least absolute shrink-
age and selection) method in combination with the GCV method, the LARS (least
angle regression) method, and the stepwise regression method for the selection and es-
timation of diagonal and subdiagonal BL models. The paper includes an analysis (and
data) of the real annual ice condition at Bohai, China, for the time period 1966–1993.

6.8 (a) The LSTAR(2; 1, 1) model is given by

Yt =φ0 + φ1Yt−1 + (ξ0 − ξ1Yt−1)/
(
1 + exp(−γ(Yt−1 − c))

)
+ εt, {εt}

i.i.d.
∼ N (0, 1),

where φ0 = 1, φ1 = 0.9, ξ0 = 3, ξ1 = 1.7, γ = 10, and c = 5. As Yt−1 → −∞,
the behavior of {Yt, t ∈ Z} is governed by the AR(1) process 1 + 0.9Yt−1 + εt,
and as Yt−1 → +∞ the behavior of {Yt, t ∈ Z} is governed by 4 − 0.8Yt−1 + εt.
Thus, in both regimes the process is stationary (local stationarity).

The LSTAR parameters estimates can be obtained by means of the following R
code.
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Figure 6.1: Histograms of
√

T (τ̂ − τ) ((a) and (c)), and histograms of
√

T (σ̂ 2
ε − σ2

ε) ((b)
and (d)) for τ = 0.6, T = 250 and 1,000; 1,000 MC replications.

##################################################################
# R code: Exercise 6.8
# File: Exercise_6-8.r
##################################################################
library(tsDyn)
set.seed(1234)
nsim <- 100 # 100 Monte Carlo replications
yy <- matrix(nrow=200,ncol=nsim) # initialize
y <- matrix(nrow=300,ncol=1)
f <- matrix(nrow=300,ncol=1)
ynew <- matrix(nrow=200,ncol=1)
for (it in 1:nsim){

y[1] <- 0 # starting condition
f[1] <- 0
u <- rnorm(300)
for(i in 2:300){

f[i] <- 1/(1+exp(-10*(y[i-1]-5)))
y[i] <- (1+0.9*y[i-1])+(3-1.7*y[i-1])*f[i]+u[i]

}
ynew <- y[101:300] # effective sample size is T=200
yy[,it] <- cbind(ynew)

}
coeff <- array(1,c(6,1,nsim)) # 6 parameters
for(j in 1:nsim) {

mod.lstar <- lstar(yy[,j],m=2,d=1,mL=1,mH=1,mTh=c(0,1),
starting.control=list(gammaInt=c(0,20),
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Table 6.5: Parameter estimates of an LSTAR(2; 1, 1) model computed with the R-tsDyn
package; T = 1,000, 100 MC replications.

Statistic φ̂0 φ̂1 ξ̂0 ξ̂1 γ̂ ĉ

Mean 1.39 0.57 0.62 -0.40 10.54 1.63
Standard deviation 0.64 0.41 1.20 0.78 9.62 1.14

nGamma=100))
# Restricting the initial value of gamma to the interval
# (0,20), and setting the number of smoothing values
# (gamma) in the grid at 100

coeff[,,j] <- mod.lstar$coefficients
}

tot <- cbind(coeff[1,,],coeff[2,,],coeff[3,,],coeff[4,,],
coeff[5,,],coeff[6,,])

meantotal <- c(6) # initialize
stdtotal <- c(6)
for(j in 1:6){

meantotal[j] <- mean(coeff[j,,]) # mean
stdtotal[j] <- sd(coeff[j,,]) # standard deviation

}

(b) Figures 6.2(a) – (f) show histograms and descriptive statistics of the LSTAR
parameter estimates for T = 200. In all cases the Jarque–Bera (JB) test statistic
rejects normality. Thus, one has to be wary about standard errors and Student t-
statistics of fitted LSTAR models. The reason is that the nonlinear LS estimates
do not satisfy the normality assumption. The overall averages of the point
estimates of all parameters are not very close to their true values. The estimated
values of φ0, φ1, ξ1 and γ, but not ξ0 and c, are contained within a confidence
interval of ±2 the standard deviations of the actual values. Nevertheless, it is
clear that it is crucial to provide the optimization routine with very good initial
values of γ and c. For T → ∞, the estimators will convergence to the true
values. Consider, for instance, the LSTAR model with T = 1,000 and 100 MC
replications. In that case we obtain the (improved) estimation results given in
Table 6.5.

(c) Optional: The S-Plus code consists of lines 2–18 of the R code in part (a) plus
the following additional lines.

gam = array(1,c(1,1,nsim)) # 1 parameter
coeff = array(1,c(4,1,nsim)) # 4 parameters
thresh = array(1,c(1,1,nsim)) # 1 parameter
for(j in 1:nsim) {

mod.lstar <- STAR(yy[,j],p=1,d=1)
gam[,,j] <- mod.lstar$gamma
coeff[,,j] <- mod.lstar$coef
thresh[,,j] <- mod.lstar$threshold

}
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Table 6.6: Parameter estimates of an LSTAR(2; 1, 1) model computed with the S-Plus
FinMetrics package; T = 200, and 100 MC replications.

Statistic φ̂0 φ̂1 ξ̂0 ξ̂1 γ̂ ĉ

Mean 1.04 0.83 4.14 -0.76 1486.19 2.77
Median 1.03 0.86 4.69 -0.90 6.45 2.94
Maximum 1.52 1.21 7.52 1.36 22026.47 3.54
Minimum 0.50 -0.35 -5.70 -1.62 1.82 1.49
Standard deviation 0.18 0.20 2.56 0.56 4876.92 0.49
Skewness 0.10 -2.62 -1.43 1.29 3.85 -0.68
Kurtosis 3.31 15.93 5.40 5.05 16.82 2.48

mean(cbind(thresh[1,,]))
mean(cbind(gam[1,,]))
sd(cbind(thresh[1,,]))
sd(cbind(gam[1,,]))
meancoeff <- c(4) # initialize
sdcoeff <- c(4)
for(j in 1:4){ # 4 parameters

meancoeff[j] <- mean(coeff[j,,])
sdcoeff[j] <- sd(coeff[j,,])

}
tot = cbind(coeff[1,,],coeff[2,,],coeff[3,,],coeff[4,,],

gam[1,,],thresh[1,,])

Using S-Plus FinMetric version 2.0.4 (2006), and no constraints on the search
for the optimal value of γ, the estimation results are given in Table 6.6.

We observe that all parameters are very close to their true values, except for γ.
As compared to the descriptive statistics corresponding to Figures 6.2(a) – (f),
it is evident that there are marked differences. Clearly, it pays off to restrict the
search for the optimal value of γ in some way, an option which is not available
in the current version of the STAR command. Despite these findings, and in
the absence of a benchmark nonlinear data set, it is not possible to say which
computer code is “best”.

6.9 (a) The Lin–Mudholkar test statistic, denoted by Z2, is given by expression (1.7)
of the main text. If a time series {Yi}n

i=1 consists of i.i.d. normal variables, the
statistic Z = (n/3)1/2Z2 is asymptotically normally distributed with mean 0
and unit variance. Below is the MATLAB code for computing Z. Its value is
Z = 0.3083 (p-value = 0.3789). Hence, the null hypothesis of normality cannot
be rejected for the SETAR residuals.

function[Z,P] = LINMUD(X)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 6.9(a)
% File: Exercise_6-9.m
%
% Purpose: Provide the Lin-Mudholkar statistic to test the
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Figure 6.2: Histograms of the LSTAR parameter estimates for T = 200; 100 MC replica-
tions.

% assumption that the input N*1 data vector X is normally
% distributed.
% Input: X = data
% Output: Z-statistic
% P-value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = length(X);
for I=1:N

T = X(I);
X(I) = 0;
BX(I) = mean(X);
R(I) = dot(X,X);
V(I) = R(I)-(BX(I)*BX(I)/(N-1))*N*N;
V(I) = V(I)/N;
ILS = 1;
if V(I) < 0

ILS = -1;
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end
V(I) = ILS*V(I);
if V(I) == 0

V(I) = 0;
else

V(I) = V(I)^(0.333333);
V(I) = ILS*V(I); % V = cube root of

% (Nth of (SS of X)-(N-1)th of (SS of X))
end
Y(I) = V(I);
X(I) = T;

end
Rcorr = corrcoef(X,Y);
R = Rcorr(1,2);
Z2 = 0.5*log((1+R)/(1-R));
Z = Z2/sqrt(3/N); % Z = asymptotically N(0,1) distributed
P = 1-normcdf(Z,0,1);

(b) The Doornik–Hansen test statistic is based on the Bowman and Shenton (1975)
test statistic. Actually, this test statistic is identical to the Jarque–Bera (JB)
test statistic for i.i.d. data (see Section 1.3.1 of the main text), although its
construction is not the same. Let Z1 and Z2 denote the transformed skewness
and kurtosis, where the transformation creates a test statistic much closer to
the standard normal. The transformation for the skewness is as in D’Agostino
(1970), and the kurtosis is transformed from a gamma to a chi-square distribu-
tion using the Wilson–Hilferty cubed root transformation, which then is trans-
lated into standard normal. The test statistic is given by E = Z2

1+Z2
2 . Under the

null hypothesis of normality it is distributed asymptotically as a χ2
2 distribution;

see Doornik and Hansen (2008, Appendix) for details about the transformation
of the third and fourth moments.

Using the function normality.test1 in the R-normwhn.test package the value of the
Doornik–Hansen test statistic is 19.018 (p-value = 0.000). Hence, the SETAR
residuals do not have a normal distribution. Clearly, this observation differs from
the one in part (a) based on the Lin–Mudholkar test statistic. Some ideas about
the “source” of non-normality, can be obtained from the following components:

sk skewness statistic
k kurtosis statistic
rtb1 skewness of standardized variable
b2 kurtosis of standardized variables
z1 skewness of transformed variable
z2 kurtosis of transformed variable
pvalsk p-value under null of no skewness
pskneg p-value under null of no negative skewness
pskpos p-value under null of no positive skewness
pvalk p-value under null of no kurtosis
pkneg p-value under null of no negative kurtosis
pkpos p-value under null of no positive kurtosis
Ep value of the normality test statistic
dof degrees of freedom
Sig.Ep significance of normality test statistic
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In fact, the null hypothesis “H0: data do not have kurtosis” is rejected at the 5%
nominal significance level (p-value = 0.000). Also, the null hypothesis “H0: data
do not have positive kurtosis” is rejected (p-value = 0.000). The above results
are further supported by results obtained with the function normality.test2 which
allows for variable(s) being weakly dependent rather than independent. The
associated value of the normality test statistic is 18.734 (p-value = 0.000).

Note: MATLAB Central offers two functions for computing the Doornik–
Hansen omnibus multivariate (univariate) normality test statistic: DorHanomun-
ortest.m and MVomnibusnew.m. Both functions produce the same test results as
given above.

(c) To calculate the bootstrap distribution of the two normality test statistics, using
CLS residuals obtained from a time series {Yt}T

t=1 fitted to a SETAR(2; p1, p2)
model, we briefly describe the main steps of the simulation algorithm. First,
consider the homoskedastic bootstrap, which treats the errors as i.i.d. draws
with the same variance across both regimes. The algorithm can be summarized
as follows.

(i) Generate a random sample {ε̂t}T
t=1 by sampling with replacement from the

CLS residuals obtained from a SETAR(2; p1, p2) model-fit with {εt}
i.i.d.
∼

N (0, 1).
(ii) Using fixed initial conditions (Y0, . . . , Y−p+1) where p = p1 ∨ p2, recursively

generate a set of pseudo-observations {Y ∗
t }

T
t=1 given the SETAR(2; p1, p2)

model with parameters estimated previously by CLS. Below the initial con-
ditions are set equal to zero.

(iii) Given the time series {Y ∗
t }

T
t=1, calculate the value of the normality test

statistic using the residuals from a new CLS–SETAR estimation.
(iv) Repeat steps (i) – (iii) B times (here B = 1,000). Next, using the BS

replicates, compute the empirical size of the normality test statistic under
study.

In addition, it is also desirable to check if there is enough data to estimate the
AR parameters in each regime. Preferably, a minimum of 20 observations per
regime is required. If this is not the case, repeat the simulation step.

For the heteroskedastic case, step (i) is based on CLS residuals obtained from a

SETAR model with regime specific variances, i.e. {ε(i)
t }

i.i.d.
∼ N (0, σ2

i ) (i = 1, 2).
Then, when simulating the EDF of {Y ∗

t , t ∈ Z}, use regime specific bootstrap
residuals.

Table 6.7 gives the empirical sizes (rejection rates ×100) of the Lin–Mudholkar
normality test statistic Z, and the Doornik–Hansen omnibus test statistic E. We
see that for Gaussian WN errors the empirical sizes are close to the nominal sizes
for both sample sizes T . For SETAR residuals, however, the rejection frequencies
of the Z and E test statistics are significantly higher than the nominal levels.
Therefore, both tests tend to reject the null hypothesis of the SETAR residuals
far too often. Increasing the sample size T from 100 to 300 does not improve the
size of both test statistics. One possible remedy of this size distortion problem
is to use bootstrapped critical values rather than asymptotic critical values.
A common factor of both test statistics is that they rely on the departure of
symmetry of possible alternatives to the normal distribution function. Figure
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Table 6.7: Empirical sizes of the Lin–Mudholkar normality test statistic Z, and the
Doornik–Hansen omnibus normality test statistic E, based on B = 10,000 BS replicates.

i.i.d. N (0, 1) SETAR–residuals
errors Case (i) Case (ii)

Statistic T 1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

Z 100 0.70 2.19 4.86 3.26 6.19 9.59 3.26 6.33 10.36
300 1.05 2.58 5.20 4.85 8.24 11.82 4.47 7.86 11.87

E 100 1.62 3.02 5.37 5.35 9.54 14.76 5.54 9.91 14.84
300 1.31 2.99 5.38 7.71 12.96 18.43 7.44 12.33 18.33
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Figure 6.3: Histogram of a typical SETAR residual time series (case (ii)) with a normal
distribution fit imposed; T = 300.

6.3 shows a histogram of a typical SETAR residual series (case (ii)) of size
T = 300 with a normal distribution function fit imposed. The p-values of the
Z and E test statistics are 0.980 and 0.0014 respectively. So, the two normality
test statistics lead to different conclusions at the 5% nominal significance level.
In general, for asymmetric error distributions the use of Pearson residuals in
diagnostic checking may lead to erroneous inference. Finally, it should be said
that it is quite unrealistic to assume that the threshold value is known in practice.

Chapter 7

7.1 (a) We find, for t 6= s such that Yt is independent of Ys,

C1,Y (h) = P(|Yt − Ys| < h) = E
(
I(|Yt − Ys| ≤ h)

)

= E[E
(
I(|Yt − Ys| ≤ h)|Ys

)
]

= E[P(|Yt − Ys| ≤ h|Ys)] =
∫ ∞

−∞
P(|Yt − y| ≤ h) dF (y)

=
∫ ∞

−∞
P(y − h ≤ Yt ≤ y + h) dF (y)

=
∫ ∞

−∞
[F (y + h) − F (y − h)] dF (y) ≡ C,

where the last step requires F (∙) to be absolutely continuous.

(b) If |t − s| > 1, then (Yt − Ys) is independent of (Yt+1 − Ys+1), because they do
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not have Yj in common. This implies

P(|Yt − Ys| ≤ h, |Yt+1 − Ys+1| ≤ h)=P(|Yt − Ys| ≤ h)P(|Yt+1 − Ys+1| ≤ h)=C2.

If s = t + 1, then conditioning on Yt+1 gives, analogously to part (a),

P(|Yt − Yt+1| ≤ h, |Yt+1 − Yt+2| ≤ h)

=
∫ ∞

−∞
P(|Yt − y| ≤ h, |Yt+2 − y| ≤ h|Yt+1 = y) dF (y)

=
∫ ∞

−∞
P(|Yt − y| ≤ h)P(|Yt+2 − y| ≤ h) dF (y)

=
∫ ∞

−∞
[F (y + h) − F (y − h)]2 dF (y) ≡ N.

The same applies if s = t−1; in that case we condition |Yt+1−Yt| and |Yt−1−Yt|
on Yt.

(c) Of the (T − 2)(T − 1)/2 terms in the expression for Ĉ2,Y (h), there are T − 2
terms with expected value N (corresponding to j = i−1), whereas the remaining
(T − 3)(T − 2)/2 terms have expected value C2. Therefore,

lim
T→∞

E[Ĉ2,Y (h)] = lim
T→∞

2N + (T − 3)C2

T − 1
= C2 = {C1,Y (h)}2.

7.2 (a) Note that the conditional mean of the ARCH(1) process is zero, and the condi-
tional variance E[ε2

t |(εt−1, εt−2, . . .)] = 1+θε2
t−1. The unconditional mean of the

process is zero, and the unconditional variance is equal unity. The log-likelihood
is given by

`(y; θ) = log fY (y1) +
T∑

t=2

log fYt|Yt−1(yt|yt−1),

where y = (y1, . . . , yT )′ are observations of the process {Yt, t ∈ Z}. Although
the first term can be calculated by determining the marginal density fY (y) up
to order θ, the stationary density must satisfy

fY (y; θ) =
∫

fY (z; θ)fYt|Yt−1(y|z)dz

=
∫

fY (z; θ)
1

{2π(1 + θz2)}1/2
e−y2/2(1+θz2)dz.

A Taylor expansion of the above transition probability function around θ = 0
gives

fY (y; θ) = (2π)−1/2e−y2/2

∫
fY (z; θ)

[
1 +

1
2
θz2(y2 − 1)

]
dz + O(θ2)

= (2π)−1/2e−z2/2
[
1 +

1
2
θ (y2 − 1)

]
+ O(θ2),

where in the first step we have used

∂

∂θ

∣
∣
∣
θ=0

1
(1 + θz2)1/2

e−y2/2(1+θz2) =

(
−

1
2
e−y2/2(θy2+1) z2(−y2 + az2 + 1)

(θz2 + 1)5/2

)∣∣
∣
θ=0

=
1
2
z2(y2 − 1)e−y2/2 ,
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and in the second step E(Z2) = 1. The copula density is given by

c(ut, ut−1; θ) =
fYt|Yt−1(F

−1(ut; θ)|F−1(ut−1; θ); θ)

fY (F−1(ut−1; θ); θ)
,

where F (∙) is the marginal CDF. Because the effect of θ is of order O(θ2), we
have

∂

∂θ

∣
∣
∣
θ=0

log c(ut, ut−1; θ) =
∂

∂θ

∣
∣
∣
θ=0

log fYt|Yt−1

(
Φ−1(ut)|Φ

−1(ut−1); θ
)

−
∂

∂θ

∣
∣
∣
θ=0

log fY

(
Φ−1(ut−1); θ

)

=
∂

∂θ

∣
∣
∣
θ=0

log fYt|Yt−1

(
Φ−1(ut)|Φ

−1(ut−1); θ
)

=
∂

∂θ

∣
∣
∣
θ=0

(
−

1
2

log
(
1 + θ(Φ−1(ut−1))

2
)
−

1
2

(Φ−1(ut))2

1 + θ(Φ−1(ut−1))2

)

= −
1
2

[(
Φ−1(ut−1)

)2
− 1
]

+
1
2

(
Φ−1(ut)

)2[(
Φ−1(ut−1)

)2
− 1
]

=
1
2

[(
Φ−1(ut)

)2
− 1
][(

Φ−1(ut−1)
)2

− 1
]
.

Replacing ut by the realizations ût, and summing over all available pairs leads
to the semiparametric (SP) score-type test statistic

QSP
ARCH =

T∑

t=2

(
Φ−1(ût)

)2(
Φ−1(ût−1)

)2
,

where in both terms the value 1 has been removed since it does not affect the
distribution of the ranks. Using Ibragimov and Linnik (1971, Thm. 19.2.1) it can
be shown, that under the null hypothesis of serial independence, and as T → ∞,

1
√

T − 1
QSP

ARCH

D
−→ N (0, 1).

Critical values for this test statistic and/or p-values can be obtained by MC
simulation.

(b) Note that the DGP is Yt|Yt−1 ∼ N (θ sign(Yt−1), 1). Similar as in part (a), the
stationary density of the sign AR(1) process must satisfy

fY (y; θ) =
∫

fY (z; θ)fYt|Yt−1(y|z)dz

=
∫

fY (z; θ)
1

(2π)1/2
e−(y−θ sign(z))2/2)dz.

Ignoring effects of order O(θ2) in fY (∙), the copula density is given by

c(ut, ut−1; θ) =
∂

∂θ

∣
∣
∣
θ=0

log fYt|Yt−1(Φ
−1(ut)|Φ

−1(ut−1); θ)

=
∂

∂θ

∣
∣
∣
θ=0

−
1
2

(
Φ−1(ut) − θ sign

(
Φ−1(ut−1)

))2

= Φ−1(ut) sign
(
Φ−1(ut−1)

)
.
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Hence, replacing ut by the realizations ût, and summing over all available pairs
leads to the score-type test statistic

QSP
sAR =

T∑

t=2

Φ−1(ut) sign
(
Φ−1(ut−1)

)
.

Under the null hypothesis of serial independence, and as T → ∞, it can be

shown that (1/
√

T − 1)QSP
sAR

D
−→ N (0, 1).

7.3 We only consider the case ` = 1. The case ` > 1 can be proved in the same way. Let
σ2

Y = Var(Yt), and ρ = Corr(Yt, Yt−1). With fY (y) = (1/
√

2πσY ) exp{− 1
2 (y/σY )2}

and

fX,Y (x, y) =
1

2πσ2
Y

1
√

1 − ρ2
exp

{
−

1
2(1 − ρ2)

{( x

σY

)2
− 2ρ

( xy

σ2
Y

)
+
( y

σY

)2}}
.

Then it is easy to show that
∫

f2
X,Y (x, y)dxdy −

∫
f2

X(x)f2
Y (y)dxdy =

1
4πσ2

Y

{(1 − ρ2)−1/2 − 1} ≥ 0. (∗)

Using the Cauchy–Schwarz inequality, we have

Δ∗(1) =
∫

f2
X,Y (x, y)dxdy −

∫
fX(x)fY (y)fX,Y (x, y)dxdy

≥
∫

f2
X,Y (x, y)dxdy

−
{∫

f2
X,Y (x, y)dxdy

}1/2{∫
f2

X(x)f2
Y (y)dxdy

}1/2

. (∗∗)

From (∗) it follows that Δ∗(1) ≥ 0. From its definition we have that Δ∗(1) = 0 if Yt

and Yt−1 are independent. On the other hand, if Δ∗(1) = 0, then from (∗∗),
∫

f2
X,Y (x, y)dxdy ≤

∫
f2

X(x)f2
Y (y)dxdy,

and it follows from (∗) that ρ = 0, i.e., Yt and Yt−1 must be independent.

7.4 Assume that under the null hypothesis of serial independence the series {et}T
t=1 is

randomly generated according to a density function f(∙). Then, for sufficiently small
h, we have

1
h
P(|et − es| < h) =

1
h

∫ ∞

−∞
f(et)

∫ et+h

et−h

f(es)desdet

≈ 2
∫

f(et)
2det ≡ k.

Moreover, for small h, it follows that

E[Cm,T (e; h)] =

(
T

2

)−1 T−1∑

t=1

T∑

s=t+1

P
(

max
i=0,1,...,m−1

|et+i − es+i| < h
)

∼= 2(hk)m,
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Figure 7.1: Dependogram summarizing the results of the CvM test statistic of serial
independence applied to the residuals of an RBF–AR(8) model fitted to the EEG recordings;
lag.max = 5. A black dot denotes approximate bootstrapped critical values.

and

lim
T→∞

lim
h→0

log E[Cm,T (e; h)]
log h

= lim
h→0

m log hk

log h
= m.

Besides

lim
h→0

log P(|et − es| < h)
log h

= 1.

By Jensen’s inequality E[log Cm,T (e; h)] ≤ log(E[Cm,T (e; h)]). So combining the above
results, it follows that for large values of T and small values of h we have

E[log Cm,T (e; h)] ≤ log(E[Cm,T (e; h)]) ∼= log P(|et − es| < h)
∼= m log k + m log h,

and where the equality holds in the linear case. Thus, in the linear regression
log Cm,T (e; h) = αm + βm log h + u the left-hand variable has a negative bias from
m log k + m log h. Hence, small values of h imply small values of the bias. So, the
estimated slope coefficients β̂m satisfy E[β̂m] ≤ m.

7.5 (a) Figure 7.2(a) shows a plot of the residuals. We see that at several places the
residuals are particularly large, which indicates that the residual variance is
nonhomogeneous (non-constant over time). This means that the model is not
following the oscillatory behavior very well, compared with other parts of the
series. Figure 7.2(b) shows the sample ACF of the residuals with medium dashed
lines indicating 95% asymptotic confidence limits. Values exceeding these limits
are at lags 3, 4, 7, 12, 13, and 20. The histogram of the residuals in Figure
7.2(c) is not extremely non-Gaussian, but it shows a slightly asymmetric shape
around zero. Assuming the residuals are weakly dependent, the p-values of the
skewness (π̂3,e), kurtosis (π̂4,e), and normality (π̂34,e) test statistics (see Section
1.3.1) are 0.968, 0.000 and 0.001, respectively. Thus, normality is rejected at the
5% nominal significance level. The above observations suggest that the RBF–
AR(8) model still has room for improvement, i.e. a more sophisticated model is
needed for characterizing the local dynamics of the epilepsy oscillations.
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Figure 7.2: EEG recordings. (a) Plot of the residuals of the fitted RBF–AR(8) model; (b)
ACF of the residuals with approximate 95% confidence bands (blue medium dashed lines);
and (c) histogram of the residuals; T = 623.

Table 7.1: Bootstrapped p-values of seven test statistics for high-dimensional serial inde-
pendence applied to the residuals of the SETAR(2; 2, 2) model fitted to the log (base 10) of
the Canadian lynx time series; T = 114, B = 100. Blue-typed numbers indicate rejection of
H0 at the 5% nominal significance level.

BDS Rank-based BDS test statistics

m Sm,T Ĩ∗
m,T M̃∗

m,T T̃ ∗
m,T Ĩm,T M̃m,T T̃m,T

2 0.24 0.02 0.68 0.02 0.65 0.68 0.08
4 0.32 0.00 0.66 0.00 0.80 0.66 0.00
6 0.42 0.00 0.52 0.00 0.62 0.52 0.00
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(b) The computational aspects can be summarized as follows.

Ats <- ts(A,freq=1) # A = residual time series, T = 623
## As we are going to consider lags up to 5, i.e., subsets of
## {1,...,6} whose cardinality is between 2 and 5 containing {1}.
d <- serialIndepTestSim(623,5) # lag.max = 5

## The next step consists in performing the three test statistics:
test <- serialIndepTest(Ats,d)

## Let us see the results:
> test

Global Cramer-von Mises statistic: 0.7139379 with
p-value 0.0004995005

Combined p-values from the Mobius decomposition:
0.0004995005 from Fisher's rule,
0.0004995005 from Tippett's rule.

All three p-values indicate very strong evidence against the null hypothesis of
serial independence. Unsurprisingly, the dependogram, which is tabulated below
and summarized in Figure 7.1, indicates that independence is rejected for sub-
sets {1, 2}, {1, 3}, and {1, 4}. These test results are in accordance with those
reported in part (a) based on the sample ACF of the residuals.

## Display the dependogram:
> dependogram(test,print=TRUE)

The subset statistics, p-values and critical values are:
subset statistic pvalue critvalue

1 {1,2} 0.9756086434 0.0004995005 1.188337e-01
2 {1,3} 0.5453707585 0.0004995005 1.188337e-01
3 {1,4} 0.2479490473 0.0004995005 1.188337e-01
4 {1,5} 0.1139513116 0.0034965035 1.188337e-01
5 {1,6} 0.0881524143 0.0064935065 1.188337e-01
6 {1,2,3} 0.0142100588 0.0004995005 1.327522e-02
7 {1,2,4} 0.0170914357 0.0014985015 1.327522e-02
8 {1,2,5} 0.0172097357 0.0004995005 1.327522e-02
9 {1,2,6} 0.0122954898 0.0024975025 1.327522e-02
10 {1,3,4} 0.0101665819 0.0104895105 1.327522e-02
11 {1,3,5} 0.0078805050 0.0524475524 1.327522e-02
12 {1,3,6} 0.0067533623 0.0924075924 1.327522e-02
13 {1,4,5} 0.0043661781 0.4420579421 1.327522e-02
14 {1,4,6} 0.0036824860 0.6798201798 1.327522e-02
15 {1,5,6} 0.0059334269 0.1643356643 1.327522e-02
16 {1,2,3,4} 0.0088659678 0.0004995005 1.749712e-03
17 {1,2,3,5} 0.0047901921 0.0004995005 1.749712e-03
18 {1,2,3,6} 0.0028819653 0.0004995005 1.749712e-03
19 {1,2,4,5} 0.0071092258 0.0004995005 1.749712e-03
20 {1,2,4,6} 0.0034064398 0.0004995005 1.749712e-03
21 {1,2,5,6} 0.0063859907 0.0004995005 1.749712e-03
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22 {1,3,4,5} 0.0041963047 0.0004995005 1.749712e-03
23 {1,3,4,6} 0.0025498530 0.0004995005 1.749712e-03
24 {1,3,5,6} 0.0036447154 0.0004995005 1.749712e-03
25 {1,4,5,6} 0.0018868016 0.0004995005 1.749712e-03
26 {1,2,3,4,5} 0.0004205817 0.0004995005 2.267765e-04
27 {1,2,3,4,6} 0.0003616803 0.0004995005 2.267765e-04
28 {1,2,3,5,6} 0.0002997129 0.0004995005 2.267765e-04
29 {1,2,4,5,6} 0.0002659954 0.0004995005 2.267765e-04
30 {1,3,4,5,6} 0.0002228651 0.0034965035 2.267765e-04
31 {1,2,3,4,5,6} 0.0000927769 0.0004995005 3.348888e-05

The critical values are such that the simultaneous acceptance
region has probability 1 - 0.05 under the null.
The individual rejection probability for any statistic obtained
from the Mobius decomposition is 1 - 0.9983467 under the null.

Remark: A simple extension of this exercise is to compute the test statistics
with jittered data to avoid possible ties.

7.6 Tong’s (1990) SETAR(2; 7, 2) model given in Table 7.5 of the main text is a refinement
of the SETAR(2; 2, 2) model of this exercise. Originally the latter model was fitted to
the yearly data covering the time period 1821 – 1919. Here, we consider the complete
set of T = 114 observations, and hence we test a time series of 112 residuals for serial
independence.

(a)+(b) Bootstrapped p-values of the nine test statistics are presented in Table 7.1. We
see that Sm,T , M̃∗

m,T , Ĩm,T , and M̃m,T fail to reject the null hypothesis of residual
serial independence at the 5% nominal significance level, and for all values of m.
Also, at m = 2, the p-values of the test statistic T̃m,T suggest that there is no
evidence of serial dependence. However, at all values m, pronounced evidence of
residual dependence can be noted from the p-values of Ĩ∗m,T and T̃ ∗

m,T . Hence,

these latter two test statistics, as well as the p-value of T̃m,T at m = 4 and
m = 6, alert us against uncritical acceptance of the SETAR(2; 2, 2) model.

7.7 (a) For a MAR(K; p1, . . . , pK) model the conditional mean and conditional variance
of {Yt, t ∈ Z} given F t−1 are given by

E(Yt|F t−1) =
K∑

i=1

πi(φi,0 + φi,1Yt−1 + ∙ ∙ ∙ + φi,piYt−pi) ≡
K∑

i=1

πiμi,t

and

Var(Yt|F t−1) =
K∑

i=1

πiσ
2
i +

K∑

i=1

πiμ
2
i,t −

( K∑

i=1

πiμi,t

)2
.

These expressions apply for any specification of the mixing weights (proportions)
πi, i.e. even when the weights are time dependent (πi,t). Hence, the Pearson
residuals ε̂t =

(
Yt − E(Yt|F t−1, θ̂T )

)
/{Var(Yt|F t−1, θ̂T )}1/2 can be computed

straightforwardly from the fitted MAR model. Figure 7.3 shows the sample
ACFs of {ε̂t}112

t=1 and {ε̂ 2
t }

112
t=1. The sample ACF of {ε̂t} shows significant values

at lags 10, 14, and 20, at the 5% nominal level. In contrast, the sample ACF
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of the squared residuals shows no signs of conditional heteroskedasticity for all
lags.

Figure 7.3: Canadian lynx time series. Sample ACF of the Pearson and the squared Pear-
son residuals obtained from the fitted MAR(2; 2, 2) model with approximate 95% confidence
bands (blue medium dashed lines).

(b) The log-likelihood function of the MAR model is

T∑

t=1

`t(Yt, θ) =
T∑

t=1

log
2∑

i=1

1
σi

fε

(Yt − φi,0 − φi,1Yt−1 − φi,2Yt−2

σi

)
πi.

In the simulation, assume that {εt}
i.i.d.
∼ N (0, 1). The estimated parameters θ̂T

(T = 114) are used to simulate a data set of T̃ = 20,000 observations from the
MAR model. Next, following the hint, compute quantile residuals and numerical
derivatives (denoted by gboots in the MATLAB codes given below) for both the
log-likelihood function and quantile residuals (sboots). Then obtain the estimate

Ω̃T̃ = G̃T̃ Î
−1

T G̃′
T̃

+ Ψ̃T̃ Î
−1

T G̃′
T̃

+ G̃T̃ Î
−1

T Ψ̃′
T̃

+ H̃T̃ ,

where G̃T̃ , Ψ̃T̃ , and H̃T̃ are defined in a similar way as, respectively, ĜT , Ψ̂T ,

and ĤT in (6.89) of the main text. Kalliovirta (2012) shows that with Ω̃T̃

(T̃ � T ) the considered test statistics have reasonable size properties.

For all values of K1 and K2 the p-values of the two test statistics are larger than
0.999; Table 7.2. Hence, there is no sufficient evidence to reject the corresponding
null hypotheses at the 5% nominal significance level.

Below is the MATLAB code for obtaining the input variables used in the compu-
tation of the two diagnostic test statistics AT,K1 and HT,K2 . Note: T̃ = 20,000
simulated observations.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Simulation part of Exercise 7.7(b).
% File: exercise77_simul.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rng('default');
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Table 7.2: Canadian lynx time series. Diagnostic test statistics for autocorrelation
(AT,K1) and heteroskedasticity (HT,K2); T = 114. P -values are given in parentheses.

K1 = K2 AT,K1 HT,K2

5 0.017 (1.000) 4.281 × 10−8 (1.000)
10 0.027 (1.000) 1.490 × 10−7 (1.000)
15 0.037 (1.000) 4.595 × 10−6 (1.000)
20 0.060 (1.000) 2.460 × 10−7 (1.000)
25 0.211 (1.000) 3.095 × 10−7 (1.000)
30 0.367 (1.000) 6.453 × 10−6 (1.000)

rng(1);

yy = data;
nr = length(yy);
ss1 = 0.0887; % As given by fitted MAR model, 1st line
ss2 = 0.2020;

term1(1) = yy(1)-0.7107;
term2(1) = yy(2)-0.9784;
term1(2) = yy(2)-0.7107-1.1022*yy(1);
term2(2) = yy(2)-0.9784-1.5279*yy(1);

for i=3:nr
term1(i) = yy(i)-0.7107-1.1022*yy(i-1)+0.2835*yy(i-2);
term2(i) = yy(i)-0.9784-1.5279*yy(i-1)+0.8871*yy(i-2);

end

cdftermyy = 0.3163.*normcdf(term1,0,1)+0.6837.*normcdf(term2,0,1);

fterm1 = normpdf(term1./ss1,0,1);
fterm1 = fterm1.*0.3163;
fterm2 = normpdf(term2./ss2,0,1);
fterm2 = fterm2.*0.6837;
ftot = fterm1 + fterm2;
f = log(ftot);
yyfr = [f';cdftermyy'];
r = yyfr;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulation part
T = 20000+2;
Tboots = 20000;
sigma1 = 0.0887;
sigma2 = 0.2020;

epsilon = normrnd(0,1,T,1);
eta = normrnd(0,1,T,1);
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yn = zeros(Tboots,1);
ar1 = zeros(Tboots,1);
ar2 = zeros(Tboots,1);

y(1) = 0.3163*0.7107+0.6837*0.9784; % mean of MAR process
yn(1) = y(1);
xlim = -norminv(0.3163,0,1);

boolean(1) = xlim-eta(1);

if(boolean(1)<0);
yn(2) = 0.7107+1.1022*yn(1)+sigma1*epsilon(2);

else
yn(2) = 0.9784+1.5279*yn(1)+sigma2*epsilon(2);

end

boolean(2) = xlim-eta(2);
if(boolean(2)<0);

yn(3) = 0.7107+1.1022*yn(2)-0.2835*yn(1)+sigma1*epsilon(3);
else

yn(3) = 0.9784+1.5279*yn(2)-0.8871*yn(1)+sigma2*epsilon(3);
end

for i=4:T
boolean(i) = xlim-eta(i);
if (boolean(i-1)<0);

yn(i) = 0.7107+1.1022*yn(i-1)-0.2835*yn(i-2)+sigma1*epsilon(i);
else

yn(i) = 0.9784+1.5279*yn(i-1)-0.8871*yn(i-2)+sigma2*epsilon(i);
end

end

apu2 = yn;
ynn = yn(3:20002,1);
z0boots1 = apu2(3:(Tboots+2)); % two lags
z0boots2 = apu2(2:(Tboots+1)); % one lag
z0boots3 = apu2(1:Tboots); % original
z0boots = [z0boots1 z0boots2 z0boots3];
z0 = z0boots;

ar1 = 0.7107 + 1.1022*z0(:,1)-0.2835*z0(:,2);
ar2 = 0.9784 + 0.9784*z0(:,1)-0.8871*z0(:,2);

cdfterms = 0.3163*normcdf((z0boots3-ar1)./sigma1,0,1)+...
0.6837*normcdf((z0boots3-ar2)./sigma2,0,1);

fterm1s = normpdf((z0boots3-ar1)./ss1,0,1);
fterm1s = fterm1s.*0.3163;
fterm2s = normpdf((z0boots3-ar2)./ss2,0,1);
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fterm2s = fterm2s.*0.6837;
ftots = fterm1s + fterm2s;
fsim = log(ftots);
yysim = [fsim;cdfterms];
apu3 = yysim;
nob = 114;
rboots = apu3((nob+1):2*nob,:);

apu4 = gradient(z0boots);
gboots = apu4((nob+):2*nob,:);
sboots = apu4(1:nob,:);

The MATLAB code for computing the autocorrelation test statistic, given a
time series of univariate quantile residuals, is given below.

function [T2] = atest(r,rboots,sboots,gboots,K1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 7.7(b)
% File: atest.m
%
% Converted from GAUSS code written by Leena Kalliovirta.
% Autocorrelation test statistic based on UNIVARIATE quantile
% residuals (QRs).
%
% INPUT:
% r = vector of quantile residuals (T * 1).
% rboots = simulated vector of QRs using estimated model (Tboots * 1).
% sboots = simulated matrix of scores of QRs using estimated model
% (Tboots * k) with k the number of columns of sboots.
% gboots = simulated matrix of derivatives of QRs using estimated
% models (Tboots * k).
% K1 = number of lags used in the autocorrelation test.
%
% OUTPUT:
% T2 = scalar value of the test statistic, follows a Chi^{2}(K1)
% distribution under H0: no autocorrelation in QRs.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T = length(r);
Tboots = length(rboots);
[~,k] = size(sboots);

warning('off','all') % Disable all warnings.
% Replace 'off' by 'on' to enable
% Warning: Matrix "cov" may be close to singular or badly scaled.
% Results may be inaccurate.

cov = inv((sboots'*sboots)/Tboots);
G2 = zeros(K1,k);
RR = zeros(K1,1);
guboots = zeros(Tboots-K1,K1);
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for t1=1:(Tboots-K1);
help = ((rboots(t1+K1))*rboots(t1+K1-1));
for i=2:K1

help = [help;((rboots(t1+K1))*rboots(t1+K1-i))];
end
guboots(t1,:) = help;

end

Sigma2 = (horzcat(sboots(K1+1:Tboots,:),guboots))'...
*(horzcat(sboots(K1+1:Tboots,:),guboots))/(Tboots-K1);

for i1=1:K1
for j=1:k

G2(i1,j) = (mean(rboots(1+i1:Tboots).*gboots(1:Tboots-i1,j)+...
rboots(1:Tboots-i1).*gboots(1+i1:Tboots,j)))';

RR(i1) = mean(r(1+i1:T).*r(1:T-i1));
end

end

O2 = [G2*cov,eye(K1)]*Sigma2*[G2*cov,eye(K1)]';
T2 = (T-K1)*(RR')*inv(O2)*RR; % Autocorrelation test statistic

The MATLAB code for the heteroskedasticity test statistic, given a series of
univariate quantile residuals, is given below.

function [T3] = htest(r,rboots,sboots,gboots,K2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 7.7(b)
% File: htest.m
%
% Converted from GAUSS code written by Leena Kalliovirta.
% Heteroskedasticity test statistic based on UNIVARIATE quantile
% residuals (QRs).
%
% INPUT:
% r = the vector of quantile residuals (T * 1).
% rboots = simulated vector of QRs using estimated model (Tboots * 1).
% sboots = simulated matrix of scores of QRs using estimated model
% (Tboots*k) with k the number of columns of sboots.
% gboots = simulated matrix of derivatives of QRs using estimated
% models (Tboots * k).
% K2 = the number of lags used in the heteroskedasticity test.
%
% OUTPUT:
% T3 = scalar value of the test statistic, follows a Chi^{2}(K2)
% distribution under H0: no heteroskedasticity in QRs.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T = length(r);
Tboots = length(rboots);
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[~,k] = size(sboots);

warning('off','all') % Disable all warnings.
% Replace 'off' by 'on' to enable
% Warning: Matrix "cov" may be close to singular or badly scaled.
% Results may be inaccurate.

cov = inv((sboots'*sboots)/Tboots);
G3 = zeros(K2,k);
RRR = zeros(K2,1);
gubts = zeros(Tboots-K2,K2);

for i2=1:K2
for j=1:k

G3(i2,j) = 2*mean((rboots(K2+1-i2:Tboots-i2).^2-1).* ...
rboots(K2+1:Tboots).*gboots(K2+1:Tboots,j)+...
((rboots(K2+1:Tboots).^2-1).* ...
rboots(K2+1-i2:Tboots-i2)).* ...
gboots(K2+1-i2:Tboots-i2,j))';

RRR(i2) = mean((r(K2+1:T).^2-1).*(r(K2+1-i2:T-i2).^2-1));
gubts(:,i2) = (rboots(K2+1:Tboots).^2-1).* ...

(rboots(K2+1-i2:Tboots-i2).^2-1);
end

end

Sigma3 = (horzcat(sboots(K2+1:Tboots,:),gubts))'* ...
(horzcat(sboots(K2+1:Tboots,:),gubts))/(Tboots-K2);

O3 = [G3*cov, eye(K2)]*Sigma3*[G3*cov, eye(K2)]';
T3 = T*(RRR')*inv(O3)*RRR; % Heteroskedasticity test statistic

Remark 1: Instead of the MAR(K; p1, . . . , pK) model with time invariant πi’s,
a more general model can be obtained by assuming that the mixing proportions
are functions of a lagged observation Yt−d (d ≥ 1); see, e.g., Lanne and Saikkonen
(2003). That is,

ft−1(Yt) =
K∑

i=1

1
σi,t

fε

(Yt − φi,0 − φi,1Yt−1 − ∙ ∙ ∙ − φi,pi
Yt−pi

σi,t

)
πi,t−d, (∗)

where

πi,t−d = P(ri−1 − Yt−d ≤ ηt < ri − Yt−d) = Fη

(ri − Yt−d

ση

)
− Fη

(ri−1 − Yt−d

ση

)
,

with Fη(∙) the CDF of {ηt, t ∈ Z}. Assume that {εt}
i.i.d.
∼ N (0, 1), {ηs}

i.i.d.
∼

N (0, σ2
η), and the processes {εt} and {ηs} are independent of each other for all

t and s. Furthermore, let

πi,t−d =






1 − Φ((Yt−d − r1)/ση) i = 1,
Φ((Yt−d − ri−1)/ση) − Φ((Yt−d − ri)/ση) i = 2, . . . ,K − 1,
Φ((Yt−d − rK−1)/ση) i = K,
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where r0 < r1 < ∙ ∙ ∙ < rK−1 < rK (r0 = −∞, rK = ∞). Then the resulting
MAR(K; p1, . . . , pK , d) model can be viewed as an extension of a conventional
SETAR model. In particular,

Yt =
K∑

i=1

(φi,0 + φi,1Yt−1 + ∙ ∙ ∙ + φi,pi
Yt−pi

+ σi,tεt)I(ri−1 + ηt ≤ Yt−d < ri + ηt),

(∗∗)

where I(ri−1 + ηt ≤ Yt−d < ri + ηt) ≡ a
b I(Yt−d < r1 + ηt) for i = 1, and

I(ri−1 + ηt ≤ Yt−d < ri + ηt) ≡ I(Yt−d ≥ rK−1 + ηt) for i = K.

Observe that {ηt} is independent of {Yt−j} (j ≥ 1). This implies that we can
write f(Yt, ηt|Yt−j) = fη(ηt)f(Yt|Yt−j). Next, we obtain ft−1(Yt) by integration
using the indicator function I(∙) in (∗∗) to divide the range of integration ac-
cording to Yt−d. Then we arrive at (∗). When σ2

η = 0, (∗∗) reduces to a SETAR
model. Clearly, in the MAR model of (∗∗) the threshold parameters are time de-
pendent random variables as opposed to fixed thresholds in the SETAR model.
An obvious extension of the MAR model (∗∗) can be obtained by assuming that
σ2

i,t follows a GARCH process.

Remark 2: In addition to the model selection results shown in Section 7.5, one
may use the R-autots package (Jang et al., 2011) to select the “best” (in the sense
of minimizing the MFE) model for the log10-transformed Canadian lynx data. Us-
ing a tree-based model selection method, and 5-steps ahead predictions, the best
model among the class of TAR models is an LSTAR model with two regimes. The
best model among the class of combined ARMA–GARCH models is an ARMA(2, 1)–
GARCH(1, 1) model. Overall, the LSTAR model is chosen as the final model with
the lowest MFE.

7.8 (a) Firstly,

E
(
f̂h(x)

)
=

1
n

n∑

i=1

E
[ 1
h

K
(x − Xi

h

)]
=
∫

R
K(z)f(x − hz)dz.

Observe that the last expression takes the form of a convolution of the kernel
and the density function, i.e. E

(
f̂h(x)

)
= (Kh ∗ f)(x). Expand f(x − hz) in a

Taylor series about x, which is valid as h → 0. For a νth-order kernel, we obtain

f(x − hz) = f(x) − hzf (1)(x) +
1
2
h2z2f (2)(x) −

1
3
h3z3f (3)(x) + ∙ ∙ ∙

+
1
ν!

hνzνf (ν)(x) + o(hν),

which is uniformly in z.

Integrating term by term, using
∫
R K(z)dz = 1 and the definition μj(K) =∫

R zjK(z)dz with μj(K) = 0 (j = 1, . . . , ν − 1), we have

E
(
f̂h(x)

)
=
∫

R
K(z)f(x − hz)dz = f(x) +

1
ν!

hνμν(K)f (ν)(x) + o(hν).

So, for higher-order kernels the bias is proportional to hν , which for ν > 2 is of
lower order than h2 in the case of second-order kernels.
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Similarly, since the kernel estimator is a linear estimator, and K
(
h−1(x − Xi)

)

is i.i.d., we have

Var(f̂h(x)
)

=
1
n
{(K2

h ∗ f)(x) − (Kh ∗ f)2(x)}

=
1

nh

∫

R
K2(z)f(x − hz)dz −

1
n

∫

R
K(z)f(x − hz)dz

=
1

nh

∫

R
K2(z){f(x) + o(1)}dz −

1
n

∫

R
K(z){f(x) + o(1)}dz

=
1

nh
R(K)f(x) + o(

1
nh

).

(b) Using the results in part (a), we have the pointwise MSE

MSE
(
f̂h(x)

)
= Bias

(
f̂(x; h)

)2
+ Var

(
f̂(x; h)

)

'
( 1

ν!
f (ν)(x)hνμν(K)

)2

+
1

nh
R(K)f(x) + o(

1
nh

+ hν)

=
μ2

ν(K)
(ν!)2

f (ν)(x)2h2ν +
1

nh
R(K)f(x)

= AMSE
(
f̂h(x)

)
.

Clearly, the first term in the third line increases in h while the second term
decreases in nh: the bias-variance trade-off. Thus, as n → ∞, we must have
h → 0 and nh → ∞. That is, h must decrease at a lower rate than n, a sufficient
condition to establish pointwise consistency of the estimator f̂h(∙).

(c) Under the integrability assumptions on f(∙), and using the results in part (b)
the MISE is given by

MISE
(
f̂h(x)

)
=
∫

R

(
f̂h(x) − f(x)

)2
dx

=
∫

R

{ 1
nh

R(K)f(x) +
μ2

ν(K)
(ν!)2

f (ν)(x)2h2ν
}

dx + o(
1

nh
+ hν)

=
1

nh
R(K) +

μ2
ν(K)
(ν!)2

h2νR(f (ν)) + o(
1

nh
+ hν)

= AMISE
(
f̂h(x)

)
+ o(

1
nh

+ hν),

where AMISE is the asymptotic MISE, i.e. a large sample approximation to the
MISE.

(d) Clearly,

∂

∂h
AMISE

(
f̂h(x)

)
=

∂

∂h

( 1
nh

R(K) +
μ2

ν(K)
(ν!)2

h2νR(f (ν))
)

= −
R(K)
nh2

+ 2νh2ν−1 μ2
ν(K)
(ν!)2

R
(
f (ν)

)
= 0.

Its solution leads to the required result, with corresponding AMISE

inf
h>0

AMISE
(
f̂h(x)

)
= (1 + 2ν)

(μ2
ν(K)R(K)2νR(f (ν))

(ν!)2(2ν)2ν

)1/(2ν+1)

n−2ν/(2ν+1).
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Notice that the first term of hopt depends on the curvature of f(∙) which is
unknown (but can be estimated). The second term can be calculated from
results in Table 7.7 of Appendix 7A.
For second-order (ν = 2) kernels the optimal h is proportional to n−1/5. For
higher-order kernels the optimal rate is slower. Thus, since higher-order kernels
have smaller bias, they can afford a larger bandwidth as opposed to second-order
kernels. Equivalently, as n → ∞, the best obtainable rate of convergence of the
MISE of the kernel estimator is of order n−2ν/(2ν+1), which for low values of ν
is less efficient than the typical parametric rate of order n−1 to be expected in
function estimation. Clearly, for ν large, the convergence rate approaches n−1.

(e) From the solution in part (d) we have an expression for the optimal AMISE. So,
using (A.5) in Appendix 7A, the efficiency of the kernel function K(∙) relative
to the kernel function K∗(∙) is given by

eff(K) =
( AMISE(K)

AMISE(K∗)

)(1+2ν)/2ν

=
[(μ2

ν(K)R(K)2νR(f (ν))
(ν!)2(2ν)2ν

)1/(2ν+1)

n−2ν/(2ν+1)

/(μ2
ν(K∗)R(K∗)2νR(f (ν))

(ν!)2(2ν)2ν

)1/(2ν+1)

n−2ν/(2ν+1)
](1+2ν)/2ν

=
( μ2

ν(K)
μ2

ν(K∗)

)1/2ν R(K)
R(K∗)

.

(f) Let g(∙) be any density function taking values on R. Set gσ(x) = σ−1g(x/σ).
Then g

(ν)
σ (x) = σ−1−νg(ν)(x/σ). Given this set-up the roughness of the function

g(∙) is given by

R
(
g(ν)

σ

)−1/(2ν+1)
=
(∫

R
g(ν)

σ (x)2dx
)−1/(2ν+1)

=
(
σ−2−2ν

∫

R
g(ν)(x/σ)2dx

)−1/(2ν+1)

=
(
σ−(2ν+1)

∫

R
g(ν)(x)2

)−1/(2ν+1)

= σR
(
g(ν)

)−1/(2ν+1)
.

Furthermore, with gσ(∙) = ϕ(∙) the normal density, we have
(
R
(
ϕ(ν)

))−1/(2ν+1)

= 2
(√πν!

(2ν)!

)1/(2ν+1)

.

Thus, on combining and replacing σ by σ̂X , the required result follows.

Chapter 8

8.1 We have

Var{γ̂(2,1)
Y (`)} = E

[ 1
(T − `)2

T∑

t=`+1

T∑

s=`+1

Y 2
t Yt−`Y

2
s Ys−`

]
.



114 Solutions

Since E(Y 2
t Yt−`Y

2
s Ys−`) = μ4,Y μ2,Y for t = s, and E(Y 2

t Yt−`Y
2
s Ys−`) = 0 for t 6= s,

it follows that Var{γ̂(2,1)
Y (`)} = μ4,Y μ2,Y /(T − `). An identical argument also shows

that Var{γ̂(1,2)
Y (`)} = μ4,Y μ2,Y /(T − `). Next, since E{γ̂(2,1)

Y (`)} = E{γ̂(1,2)
Y (`)} = 0,

we have

Cov{γ̂(2,1)
Y (`), γ̂(1,2,)

Y (`)} = E
[ 1
(T − `)2

T∑

t=`+1

T∑

s=`+1

Y 2
t Yt−`YsY

2
s−`

]
.

Since E(Y 2
t Yt−`YsY

2
s−`) = μ3

2,Y for s = t − `, E(Y 2
t Yt−`YsY

2
s−`) = 0 for s 6= t −

`, and since the condition s = t − ` occurs T − 2` times in the calculation of
Cov{γ̂(2,1)

Y (`), γ̂(1,2,)
Y (`)}, we have

Cov{γ̂(2,1)
Y (`), γ̂(1,2,)

Y (`)} = μ3
3,Y

T − 2`

(T − `)2
.

On substitution of the above results in

Var{ψ̂Y (`)} = Var{γ̂(2,1)
Y (`)} + Var{(γ̂(1,2)

Y (`)} − 2Cov{γ̂(2,1)
Y (`), γ̂(1,2)

Y (`)},

we obtain the required result (8.5) of the main text. If the underlying distribution is
normal, Var{ψ̂Y (`)} = 4μ3

Y . Recall, in Exercise 5.1 we noted that the standardized
bicovariance is asymptotically normally distributed with mean zero and variance 3(T−
`).

8.2 Clearly,

γ
(i,j)
TR (`) =

1
T2 − T1 − `

∫ −T1−`

−T2

f i
TR(t)f j

TR(t + `)dt

=
1

T2 − T1 − `

∫ −T1−`

−T2

f i(−t)f j(−(t + `)
)
dt

= −
1

T2 − T1 − `

∫ T1

T2−`

f i(ξ + `)f j(ξ)dξ

=
1

T2 − T1 − `

∫ T2−`

T1

f j(ξ)f i(ξ + `)dξ = γ(j,i)(`).

Now, assuming time-reversibility, we have

γ
(i,j)
TR (`) =

1
T2 − T1 − `

∫ −T1−`

−T2

f i
TR(t)f j

TR(t + `)dt

=
1

T2 − T1 − `

∫ −T1−`

−T2

f i(−t)f j
(
− (t + `)

)
dt

=
1

T2 − T1 − `

∫ −T1−`

−T2

f i(t + ξ)f j(t + ξ + `)dt

=
1

T2 − T1 − `

∫ −T1−ξ−`

−T2+ξ

f i(η)f j(η + `)dη

=
1

T2 − T1 − `

∫ T2−`

T1

f i(η)f j(η + `)dη = γ(i,j)(`),
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where η = t+ ξ. Inspection of Figure 8.1 shows that (T2 − ξ) = −T1, and −(T1 + ξ) =
T2, which accounts for the changes in the limits of the last integration. An alternative
way for expressing γ

(i,j)
TR (`) is γ(i,j)(−`), defined by

γ(i,j)(−`) =
1

T2 − T1 − `

∫ T2

T1+`

f i(t)f j(t − `)dt

= −
1

T2 − T1 − `

∫ −T2

−T1−`

f i(−φ)f j(−φ − `)dφ

=
1

T2 − T1 − `

∫ −T1−`

−T2

f i
TR(φ)f j

TR(φ + `)dφ = γ
(i,j)
TR (`),

where φ = −t.

−T2 −(T1 + `) −T1

fTR(t)

T1 (T2 − `) T2

f(t)

Figure 8.1: Sketch of time-reversibility (TR); Exercise 8.2.

8.3 (a) The numerator can be written as

E[{Yt − Yt−`}
3] = E[Y 3

t − 3Y 2
t Yt−` + 3YtY

2
t−` − Y 3

t−`]

= 3E(Y 2
t )3/2{ρ(2,1)

Y (`) − ρ
(2,1)
Y (−`)}.

Similarly, the denominator can be written as

E[{Yt − Yt−`}
2]3/2 = [2E(Y 2

t ){1 − ρ
(1,1)
Y (`)}]3/2.

On combining these results, we get the desired expression.

(b) The derivative of ρ
(1,1)
Y (`) when ` = 0 is −ρ′11(0) ≈ −ρ

(1,1)
Y (`)/`. Further,

ρ
(2,1)
Y (`) − ρ

(2,1)
Y (−`) ≈ −2`ρ′21(0). Substituting these results in the expression

in part (a) gives the approximation in part (b).

(c) From part (b) we see that E(X3
t )/E(X2

t )3/2 is of order 1/`1/2. So, for small
values of |`| time-irreversibility is most apparent, which seems also plausible on
theoretical grounds. Explicit expressions of ρ

(2,1)
Y (`) for a particular nonlinear

process are usually difficult to derive; see, e.g., Example 4.1 of the main text.
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8.4 (a) The result that BY and (1−B)Y are independent Gamma(kρ, β) and Gamma(k(1−
ρ), β) random variables follows from Patil and Seshadri (1964). Then

E[exp{−(v + Bu)Y }] = E[exp{−(u + v)BY − u(1 − B)Y }]

= E[exp{−(u + v)BY }]E[exp{−v(1 − B)Y }],

from which the result in part (a) follows.

(b) The joint Laplace–Stieltjes transform is given by

LYt,Yt−1(u, v) = E[exp{−uYt − vYt−1}]

= E[exp{−uBtYt−1 − uGt − vYt−1}]

= E[exp{−uGt}]E[exp{−(v + Bu)Yt−1}],

because of stationarity, and where in the last step we used the assumed inde-
pendence of Gt and Yt−1. The Laplace–Stieltjes transform of Gt is L(u) =
E[exp{−uGt}] = (β/(β + u))k. Now, using the result in part (a), we have

LYt,Yt−1(u, v) =
( β

β + u

)k(1−ρ)( β

β + v + u

)kρ

=
( β

β + u
×

β

β + v

)k(1−ρ)( β

β + v + u

)kρ

.

(c) Since LYt,Yt−1(u, v) is symmetric in u and v, the joint distribution of Yt and
Yt−1 is symmetric. Also, since the joint distribution of any set of Yt’s can be
obtained from the result in part (b) and the marginal Gamma distribution,
the BGAR(1) process is time-reversible, and therefore very limited in practice.
Several models for broadening the structure of Gamma time series have been
given in the literature; see, e.g., Bakouch and Ristic̀ (2009), and the references
therein.

8.5 Proofs:

(a) (Sketch). The process is a second-order Markov chain. By introducing a bivari-
ate state vector (Yt−1, Yt)′ one arrives at a usual Markov process. The unique-
ness of the invariant measure follows from the aperiodicity and irreducibility
properties of the Markov chain.

(b) (Sketch) The conditional distribution of Yt given Yt−1 = u and Yt−2 = v differs
from that of Yt−2 given Yt−1 = u and Yt = v. Hence, there is asymmetry for
m = 3, and by implication for all higher orders m.

(c) (Sketch) It can be shown that the conditional distribution of Yt+` given Yt = u
is uniform on the interval [0, 1) regardless the value of u. Since the marginal
distribution of {Yt, t ∈ Z} is also U(0, 1), the joint distribution of (Yt−`, Yt) is
uniform on [0, 1]2, and hence symmetric.

8.6 (a) Using the R-np package, the test results can be obtained as follows.

##################################################################
# R code: Exercise 8.6
# File: exercise_8-6.r (Load R-np package)
##################################################################
Ats <- ts(A,freq=1) # Replace "A" by the name of a data set
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Table 8.1: Bootstrapped p-values of the Ŝ(∙) test statistics. Blue-typed numbers indicate
rejection of the null hypothesis H(`)

0 (` = 0, 1, 2, 3, 4) of TR at the 5% nominal significance
level.

H(`)
0

Series H(0)
0 ` = 1 ` = 2 ` = 3 ` = 4

Unemployment rate(1) 0.000 0.020 0.040 0.101 0.000
EEG recordings 0.000 0.000 0.000 0.000 0.000
Magnetic field data 0.051 0.081 0.373 0.495 0.101
ENSO phenomenon 0.010 0.061 0.020 0.000 0.000
Climate change: δ13C 0.000 0.626 0.879 0.333 0.242

δ18O 0.020 0.848 0.061 0.000 0.000

(1) First differences of original data.

# Note: the test function converts time series data into
# numeric data. Alternatively, use: Anum <- as.matrix(A) to
# create a numeric vector.

npunitest(Ats,-Ats,boot.num=99)
# Note: by default the integral version of the statistic is
# computed (recommended). To speed up computations one may use:
# method=c("summation")

Table 8.1, column 2, shows p-values of the TR test statistic computed under
H(0)

0 . It is evident that, except for the magnetic field data, there is sufficient
evidence to reject the null hypothesis of TR for almost all series.

(b) The null hypothesis H(1)
0 implies that f(Yt − Yt−1) is symmetric when a series

is TR. Letting Xt(1) = Yt − Yt−1, we have from the TR definition that f(x) =
f(−x) ∀x, where f(x) denotes the pdf of the process {Xt(1), t ∈ Z}. Table 8.1,
column 3, shows p-values of the test statistic Ŝ(1) computed under H(1)

0 . Inter-

estingly, we find similar test results as under H(0)
0 for the first three series. The

conclusion based on the p-values for the last three series is, however, different.

Remark: If time permits, an obvious extension of question (b) is to compute
the TR test statistic Ŝ(`) for lags ` = 2, 3, and 4. The p-values of the correspond-
ing test statistics are displayed in the last three columns of Table 8.1. Clearly,
the test results for the series entitled Unemployment rate, EEG recordings, and
ENSO phenomenon, indicate time-irreversibility for almost all lags `. On the
other hand, the test statistic Ŝ(`) fails to reject the hypothesis of TR for the
magnetic field data. The results for the two climate change series are somewhat
“mixed” with rejections of the null hypothesis at certain lags. Moreover, com-
paring the p-values in Table 8.1 for lags ` = 1, . . . , 4 with the those reported in
Table 8.1 of the main text under the heading “Nonparametric” for m = 2, . . . , 5
(Note: ` ≡ m − 1, here), we see that there is even less agreement between the
results of the nonparametric test statistics Sh,T (m) and Ŝ(`). Only for the mag-
netic field data and the δ13O time series, these two test statistics arrive at the
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same conclusion, i.e. their p-values indicate that there is overwhelming evidence
not to reject the null hypothesis of TR.

Chapter 9

9.1 [(a)+(b)] Figure 9.1(a) shows plots of the simulated data (black circles), the true
regression function (blue solid line), the NW local constant regression estimate
with the Epanechnikov kernel (purple solid line), and the LL regression estimate
with the Gaussian kernel (black solid line), both with h = 0.02. Clearly, the
regression estimates are very rough and wiggly. In fact, the estimates μ̂NW

h (∙)
and μ̂LL

h (∙) practically reproduce the data resulting in biased estimates of μ(∙).
The size of the neighborhood around x is too small so that the kernel estimates
are unable to closely resemble the true regression function. In other words, the
two kernel regression estimates of μ(∙) do not shift the chaff (noisy data) from
the wheat (true regression function). For the NW estimator, it follows that
μ̂NW

h (xt) → Kh(0)Yt/Kh(0) = Yt as h → 0.

Using the MATLAB-ksregress function the classical CV criterion, the Shibata
CV, Rice CV, full CV, final prediction CV, Akaike’s CV, and GCV all give
hmin = 0.004. Consequently, the resulting regression estimates are even more
noisy.

[(c)+(d)] It follows that the value of the bandwidth is given by hrot = 1.1864 ×
(4/1500)0.2 = 0.3626. Figure 9.1(b) shows plots of the data (black circles),
the true regression function (blue solid line), the NW local constant regression
estimate with the Epanechnikov kernel (purple solid line), and the LL regression
estimate with the Gaussian kernel (black solid line) with this plug-in bandwidth.
The regression estimates are fairly smooth and, in contrast with the results in
Figure 9.1(a), resemble the true regression function more closely. In fact, as h
becomes larger, the weights Wt(∙) will spread over larger neighborhoods of the
time series values in the interval [−2, 2]. An extreme case is when h → ∞, then
μ̂NW

h (xt) →
∑T

t=1 Kh(0)Yt/
∑T

t=1 Kh(0) = T−1
∑T

t=1 Yt = Y , suggesting that
large bandwidths lead to an oversmoothed curve – the sample mean.

The figures can be reproduced by using the following MATLAB code.

function [yhat,dydx,rlr,yinf] = smth(h,x,y,kern)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 9.1
% File: smth.m
%
% Purpose: Kernel smoothing function. Applies LL regression to
% weighted data.
%
% INPUT:
% x = abscissa values
% y = ordinate values
% h = smoothing parameter
% kern = kernel smoother
% kern = 0, uses Gaussian kernel
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Figure 9.1: Data file: Yt-n500-sinus.dat. Kernel smoothing regression with bandwidths (a)
h = 0.02, and (b) h = 0.3626.

% kern = 1, uses 1/(1+x^2)
% kern = 2, uses Epanechnikov kernel 0.75*(1-x^2) on [-1<x<1]
%
% OUTPUT:
% yhat = local linear smooth of data y, using abscissa x, bandwidth
% h and kernel function kern
% dydx = local linear estimate of derivative of y
% rlry = -dydx/(yhat-yinf) where yinf is estimated roughly as that
% portion of yhat for which dydx is smallish
% yinf (see above)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zerotol = 1e-14;

difs = meshgrid(x,x);
difs = difs' - difs;
kernvals = g(difs/h,kern);
y = meshgrid(y,y)';
s0 = sum(kernvals);
t0 = sum(kernvals.*y);
temp = difs.*kernvals;
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s1 = sum(temp);
t1 = sum(temp.*y);
temp = difs.*temp;
s2 = sum(temp);

% Add zerotol to avoid divide by zero on flat series
yhat = (s2.*t0 - s1.*t1)./((s0.*s2 - s1.*s1)+zerotol);

if nargout>1 % Only compute slope if required
dydx = (s0.*t1 - s1.*t0)./((s0.*s2 - s1.*s1)+zerotol);

end
if nargout>2 % Only compute RLR and estimate yinf if rlr required

sizex = max(size(x));
q1 = floor(sizex/5);
yinf = mean(yhat((4*q1):sizex));
rlr = -1*dydx./(yhat-yinf);

end

% Next, the subfunction required
% Create Kernel evaluating subfunction

function gx = g(x,kern)
if kern==0

gx = exp(-((x.*x)/2)) ; % Use x.*x not x.^2 for speed
elseif kern==1

gx = 1./(1+(x.*x));
elseif kern==2

gx = max(0.75*(1-x.*x),0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MAIN: Exercise 9.1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = load('Yt-n500-sinus.dat');
x = linspace(-2,2,500);
h = 0.02;
for i=1:500

z(i) = sin(x(i));
end
% Local linear regression
[yhat2,dydx,rlr,yinf] = smth(h,x,y,2); % Epanechnikov kernel
[yhat0,dydx,rlr,yinf] = smth(h,x,y,0); % Gauss kernel

plot(x,z);
hold on;
scatter(x,y,'black');
hold on;
plot(x,yhat2,'magenta');
hold on;
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Figure 9.2: Great Salt Lake (GSL) monthly volume time series for the time period October
1949 – December 2012 (756 observations). The red medium dashed vertical line indicates
the end of the time period under consideration.

plot(x,yhat0,'black')
title('(a) Kernel Smoothing Regression');
legend('true','data','NW local constant','Local linear','location','northwest');

9.2 (a) Below is a MATLAB function for univariate (unweighted) k-NN out-of-sample
forecasting.

function[Ypred,actual,errors] = kNN(data,pset,p,method)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 9.2(a)+(b)
% File: kNN.m
%
% Converted from GAUSS routines (supplementary material) written by
% Ted Jaditz and Leigh A. Riddick.
%
% Reference:
% Jaditz, T. and Riddick, L.A. (2000).
% Time-Series Near-Neighbor Regression.
% Studies in Nonlinear Dynamics and Econometrics,
% 4(1), 35-44.
% DOI: 10.2202/1558-3708.1054.
%
% INPUT:
% data = Vector of T=size(data,1) time series Y_{t}
% pset = Size of the prediction set
% P = {(Y_{t},X_{t}): N_{f}<t<= T}
% p = 1,2. Dimension of X_{t}=(Y_{t},Y_{t+1},...,Y_{t+p-1})'
% method = type of "fitting" (window) set F:
% 1 = Fixed, i.e. F={(Y_{t},X_{t}): t<=N_{f}}
% 2 = Rolling, i.e. F_{t}={(Y_{i},X_{i}): t-N_{f}<i<t}
% 3 = Expanding, i.e. F_{t}={(Y_{i},X_{i}): i<t}
%
% OUTPUT:
% Ypred = One-step ahead forecasts for the value of k



122 Solutions

% that minimizes the CV estimate of MSE
% actual = Actual values
% error = Prediction error (= actual - Ypred)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if p == 1;

x1 = data(p:size(data,1));
X = x1;

elseif p == 2;
x1 = data(p:size(data,1)-1);
x2 = data(p-1:size(data,1)-2);
X = [x1,x2];

end
y = data(p+1:size(data,1));
for i = 1:pset; % Start main loop, for each observation in F_{t}

yi = y(size(y,1)-pset+i);
xi = X(size(X,1)-pset+i,:);
if method == 1;

ypred = y(1:size(y,1)-pset);
xpred = X(1:size(X,1)-pset,:);

elseif method == 2;
ypred = y(i:size(y,1)-pset+i-1);
xpred = X(i:size(X,1)-pset+i-1,:);

elseif method == 3;
ypred = y(1:size(y,1)-pset+i-1);
xpred = X(1:size(X,1)-pset+i-1,:);

end
% Create distance table

distance = zeros(size(xpred,1),1);
for j = 1:size(xpred,1);

distance(j) = max(abs(xpred(j,:)'-xi')); % supremum norm
end

% Sort the data according to distance
datasort = sortrows([distance,ypred,xpred]);
sortedDistance = datasort(:,1);
ypred = datasort(:,2);
xpred = datasort(:,3:size(datasort,2));

% Loop through sorted data doing regressions
XX = zeros(size(xpred,2),size(xpred,2));
Xy = zeros(size(X,2),1);
msekNN = zeros(size(xpred,1),1);
for j = 1:size(xpred,1);

% Update matrices for this regression ...
XX = XX+xpred(j,:)'*xpred(j,:);
Xy = Xy+xpred(j,:)'*ypred(j);

% Solve for the parameter vector ...
XXinv = pinv(XX); % Moore-Penrose pseudoinverse
bij = XXinv*Xy;
eij = yi-xi*bij;
if j == 1 ;



Chapter 9 123

eij = yi-ypred(1);
end
msekNN(j) = msekNN(j)+eij*eij;

end % end of loop over neighbors, j=1:size(xpred,1)
end % end of loop over elements of the P set, i=1:pset
% Identify, rebuild the best near-neighbor

[C,whichOne] = min(msekNN/pset);
fprintf('Min. MSE occurs at %d where MSE = %d.\n',whichOne,C);
actual = y(size(y,1)-pset+1:size(y,1));

% Start rebuilding the k-NN forecasts
for i = 1:pset

yiRe = y(size(y,1)-pset +i);
xiRe = X(size(X,1)-pset+i,:);
if method == 1;

ypredRe = y(1:size(y,1)-pset);
xpredRe = X(1:size(X,1)-pset,:);

elseif method == 2;
ypredRe = y(i:size(y,1)-pset+i-1);
xpredRe = X(i:size(X,1)-pset+i-1,:);

elseif method == 3;
ypredRe = y(1:size(y,1)-pset+i-1);
xpredRe = X(1:size(X,1)-pset+i-1,:);

end
% Create distance table

distanceRe = zeros(size(xpredRe,1),1);
for j = 1:size(xpredRe,1);

distanceRe(j) = max(abs(xpredRe(j,:)'-xiRe'));
end

% Sort the data according to distance
dataRe = sortrows([distanceRe,ypredRe,xpredRe]);
ypredRe = dataRe(:,2);
xpredRe = dataRe(:,3:size(dataRe,2));

% Build the data set to replicate the regression
XXRe = zeros(size(xpredRe,2),size(xpredRe,2));
XyRe = zeros(size(X,2),1);
for j = 1:whichOne;

XXRe = XXRe+xpredRe(j,:)'*xpredRe(j,:);
XyRe = XyRe+xpredRe(j,:)'*ypredRe(j);

end
XXinvRe = pinv(XXRe);
bijRe = XXinvRe*XyRe;
eijRe = yiRe-xiRe*bijRe;
error(i) = eijRe;

end % end of loop over elements of P set, i=1:pset
Ypred = actual-error';

end

Remark: The supremum norm may be replaced by, for instance, the Euclidean
norm. Jaditz and Riddick (2000) discuss the use of a local weighting scheme
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in the implementation of the k-NN regression estimation. Their MC simula-
tion experiments, however, indicate that for a small number of observations the
weighted matrices X′

(i)X(i) can be much closer to singular (non-invertible) than
the unweighted regression matrices.

For a uniform kernel, i.e. Kkn,i(x) = n/kn if i ∈ N(x) and 0 otherwise, it is
obvious that the specified k-NN regression estimator is a special case of the
estimator μ̂k-NN(x) defined by (9.33) in the main text. Clearly, other kernels or
weight sequences can be used; see, e.g., Härdle (1990, Section 3.2).

Another extension of the above algorithm, is to use a discrete resampling (boot-
strapping) kernel function which is based on the ordered set of nearest neighbor
indices N(x); see, e.g., Lall and Sharma (1996). This will preserve the serial
dependence structure of a time series process rather than making explicit as-
sumptions about the DGP under study.

Figure 9.2 shows the GSL monthly volume time series for the time period October 1949
– December 2012 (756 observations). We see clear annual variation and a much longer
period with longer periods associated with other dynamics. During the period 1983 –
1987 the lake underwent a modern era rise and threatened the Union Pacific Railroad,
Interstate 80, the GSL minerals industry and the Salt Lake City airport. Lall and
his co-workers (see, e.g., Abarbanel and Lall, 1996; Sangoyomi et al., 1996) present
many studies discussing whether the dynamics are linear or nonlinear; deterministic
or stochastic; the dimensionality of the series and its predictability.

Our focus here is on nonparametric short-term forecasting. Let {Yt}519
t=1 denote the

time series under consideration, covering the time period October 1949 – December
1992. Some summary statistics are:

Y = 6.55 × 109, SY = 2.18 × 109,

τ̂Y (skewness) = 1.45, κ̂Y (kurtosis) = 4.52, and JB = 232.60 (p-value = 0.00).

Throughout the analysis, we focus on the standardized GSL time series. The first
T = 507 observations are used for parameter estimation and the last 12 observations
(pset = 12) for out-of-sample forecasting.

(b) • Using the k-NN regression algorithm of part (a) with an expanding window
(method = 3) and p = 2, the minimum MSE value occurs at k∗

n = 4 near
neighbors with MSE of 3.082×10−5. The plot of actual versus predicted
values in Figure 9.3 confirms the excellent fit. Similar forecast results were
obtained on the basis of the fixed and rolling window fitting sets.

As indicated earlier, kn plays a role similar to the bandwidth hn for kernel
smoothers. In particular, the kernel estimator is based on specifying the
radius for the local neighborhood and locating the points that fall in it,
whereas the k-NN estimator specifies the number of points and determines
the associated radius. If kn = n, the k-NN smoother uses all of the observa-
tions, and μ̂k-NN(x) then becomes the sample average of the series {Yt}n

t=1

(n = T − p). This may reduce the variance of the estimator. However, if
μ(x) is not actually constant, then μ̂k-NN(x) will be biased for many values
of x. If, on the other hand, kn = 1 then the observations are reproduced at
X(i), i.e. μ̂k-NN(x) is based on just one observation. In that case X(i) will
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Figure 9.3: Forecasts results for the standardized GSL time series (T = 519). Twelve one-
step ahead forecasts, based on estimates obtained from an expanding training set starting at
time index t = 505.

be close to x, and the bias will be relatively small. Unfortunately, this will
come at the cost of an increased variance of the k-NN estimator. So again,
there is a bias-variance trade-off problem. In general, kn =

√
n is usually a

good choice for model order 1 ≤ p ≤ 6, particularly for T ≥ 100.

• Figure 9.3 reveals that the local constant regression (Nadaraya–Watson)
estimator with a Gaussian kernel and a bandwidth obtained by CV (green
solid line) has equally well forecasting performance as the k-NN regression
estimator (blue solid line).

The following R code will generate the forecast results.

###############################################################
# R code: Exercise 9.2(b)
# File: Local-constant-regression.r
#
# Local constant regression with a Gaussian product kernel
# and a single bandwidth obtained using cross-validation.
#
# INPUT:
# pset = size of prediction set (here 12)
# p = Markov order (here 2).
# OUTPUT:
# Ylc = (pset * 1) vector of forecasts
################################################################
library(np)
zGSL <- scale(GSL519) # standardized data
zGSLt <- ts(zGSL)
nr <- length(zGSLt)
p <- 2 # lag length (Markov order)
pset <- 12
n <- nr-pset-p
lagmat <- function(x,max.lag) embed(c(rep(NA,max.lag),x),max.lag+1)
xlag <- lagmat(zGSLt,p)
Ylc <- matrix(0,nrow=pset,ncol=1)
for (i in 1:pset){
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Xactual <- window(cbind(xlag[3:nr,2],xlag[nc:nr,3]),end =n+i)
Yactual <- window(cbind(xlag[3:nr,1]),end =n+i)
Yc <- c(Yactual)
bw <- npregbw(xdat=Xactual,ydat=Yc)
fit.lc <- npksum(txdat=Xactual,tydat=Yc,bws=bw$bw)$ksum/

npksum(txdat=Xactual,bws=bw$bw)$ksum
Ylc[i,] <- fit.lc[n+i]

}

• For twelve one-step ahead forecasting, using an expanding data set and
AVAS estimation, the following R code can be employed.

###############################################################
# R code: Exercise 9.2(b)
# File: AVAS-estimation-forecasting.r
#
# INPUT:
# pset = size of prediction set (here 12)
# p = Markov order (here 2)
#
# OUTPUT:
# Ypred = (pset * 1) vector of one-step ahead forecasts
###############################################################
library(acepack)
zGSL <- scale(GSL519) # standardized data
zGSLt <- ts(zGSL)
nr <- length(zGSLt)
p <- 2 # lag length (Markov order)
pset <- 12
n <- nr-pset-p
lagmat <- function(x,max.lag)embed(c(rep(NA,max.lag),x),max.lag+1)
xlag <- lagmat(zGSLt,p)

Ycmat1 <- matrix(0,nrow=pset,ncol=1)
Ypred <- matrix(0,nrow=pset,ncol=1)
for (i in 1:pset){

Xactual1 <- window(xlag[3:nr,2],end =n+i)
Yactual1 <- window(xlag[3:nr,1],end =n+i)
avasout1 <- avas(Xactual1,Yactual1)
Ypred1 <- avasout1$ty[n+i]
Ycmat1[i,] <- Ypred1 # 1-step ahead forecast, 1st lag

Xactual2 <- window(xlag[3:nr,3],end =n+i)
Yactual2 <- window(xlag[3:nr,1],end =n+i)
avasout2 <- avas(Xactual2,Yactual2)
Ypred2 <- avasout2$ty[n+i]
Ypred[i,] <- Ypred2+Ypred1 # 1-step ahead forecast,

# 1st and 2nd lag
}

Figure 9.3 shows that the AVAS forecasting method (red solid line) performs
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Figure 9.4: Plots of AVAS model fit for the standardized GSL time series; T = 519.

poorly as compared to the forecast performance of the k-NN method. For
T = 519, Figure 9.4 displays details of the AVAS fit (R2 = 0.983) using
3 iterations. Clearly, AVAS indicates that Yt−2 is nonlinear (a quadratic
function) while Yt−1 seems to be best transformed by a linear function. So,
using these plots one can choose “parametric” forms of the transformations.

The following R code, written by Brant Deppa, can be used to reproduce
the results in Figure 9.4.

###############################################################
# R code: Exercise 9.2(b)
# File: MAVASplot.r
#
# Plots of AVAS transformation results.
#
# INPUT:
# xmat = Matrix (e.g. Xactual) containing the independent
# variables. Note: p > 1 independent variables
# y = Vector (e.g. Yactual) with the response variable
# x = List (e.g. avasout) containing 10 components
###############################################################
mavasplot = function(xmat,y,x,nrow=2,ncol=2){

par(mfrow=c(nrow,ncol),ask=T)
for (i in 1:ncol(xmat)){

plot(xmat[,i],x$tx[,i],xlab=dimnames(xmat)[[2]][i],
ylab="Transformed x",pch=20,col="red")

rug(xmat[,i])
}
plot(y,x$ty,xlab="y",ylab="transformed y",cex=0.7,

pch=20,col="blue")
fit <- rep(0,length(y))
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for (k in 1:ncol(xmat)){
fit <- fit+x$tx[,k]

}
plot(fit, x$ty,main="Plot of Transformed y vs. Fit",

xlab="Fit",ylab="Transformed y ",pch=20,col="blue")
r <- x$ty-fit
plot(fit,r,xlab="tx",ylab="residuals",sub="Residuals vs.
Fit",pch=20,col="red")
abline(h=0,col="black",lty=2)
par(mfrow=c(1,1),ask=F)
invisible()

}

The MSFEs, i.e.
∑12

H=1(Yt+H − Ŷt+1|t)2/12, of the three forecasting meth-
ods are, respectively, 0.0016 (k-NN), 0.0014 (Local constant), and 0.1505
(AVAS). So, both k-NN regression and the local constant regression pro-
duce forecasts with the smallest MSFEs for this particular data set, and
particular time period.

Figure 9.5: A particular realization of a simulated ExpAR(2) process; T = 200, Ex-
pAR2.dat time series.

9.3 (a) Figure 9.5 shows a time series realization of the ExpAR(2) process Yt = {0.9 +

0.1 exp(−Y 2
t−1)}Yt−1 −{0.2 + 0.1 exp(−Y 2

t−1)}Yt−2 + εt, where {εt}
i.i.d.
∼ N (0, 1).

The red medium dashed vertical line indicates the start of the out-of-sample
forecast period. The plot suggests that the series is stationary with a constant
mean and a constant variance. A sufficient condition for strict stationarity for
this process is that the roots of the associated characteristic equation z2 − c1z−
c2 = 0 are inside the unit circle, with c1 = max{|0.9|, |0.9 + 0.1|} = 1, and
c2 = max{| − 0.2|, | − 0.2 + 0.1|} = 0.2. The solutions are z1 = −0.7236 and
z2 = −0.2764. Thus, the process {Yt, t ∈ Z} is stationary.

(b) Using the function regFit in the R-fRegression package with the option use=”ppr”,
the output is as follows.

Title:
Projection Pursuit Regression

Formula:
y ~ x
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Family:
gaussian identity

Model Parameters:
-- Projection Direction Vectors --

term 1 term 2
xV1 0.9390225 -0.99524382
xV2 -0.3438558 0.09741531
-- Coefficients of Ridge Terms --

term 1 term 2
1.1040792 0.3844721
Residual Variance:
0.7787314

Goodness of fit:
2 terms

146.6212

Here, the roman type x denotes the two-period lagged data matrix of size (187×
2), and y denotes the simulated time series of length T = (189−2) = 187 (deleting
the first two observations since p = 2). Adopting the notation introduced in the
main text, we have

β̂1 = 1.104079, α̂1 = (α̂1,1, α̂1,2)
′ = (0.9390225, −0.3438558)′

β̂2 = 0.3844721, α̂2 = (α̂2,1, α̂2,2)
′ = (−0.99524382, 0.09741531)′,

with the constraint
∑2

j=1 α̂2
i,j = 1.

(c) Using the function regFit in the R-fRegression package with the option use=”nnet”,
the output is as follows.

Title:
Feedforward Neural Network Modeling

Formula:
y ~ x

Family:
gaussian identity

Model Parameters:
a 2-2-1 network with 9 weights
options were - linear output units

[1] 31.2494159 -22.9550428 -16.9108426 -1.6019634 0.2459704
-0.1002664 -3.5628607 -0.4306908

[9] 23.2361972
Residual Variance:
0.9665153

(d) Table 9.1 contains the one-step ahead forecasts at times t = 190, . . . , 200 for the
PPR model, ANN model, and a linear regression model (benchmark) with two
lagged predictors. Given these values, the out-of-sample one-step ahead mean
square forecast errors (MSFEs) are given by 1.0653 (PPR), 1.2440 (ANN), and
1.3059 (linear model). So, the PPR model provides better forecasting results
than the other two models for this particular time series realization. The out-
of-sample one-step ahead values of the MAFE seems to support this tentative
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conclusion with values 0.8698 (PPR), 0.9278 (ANN), and 0.9878 (linear model)
respectively. Of course, these outcomes are based on a single replication. Fur-
ther, we see that the residual variance of the PPR model (0.7787314) is consid-
erably smaller than the residual variance of the ANN model (0.9665153). So,
the PPR model has the best in-sample fit.

Table 9.1: One-step ahead forecasts at times t = 190, . . . , 200; ExpAR2.dat time series.

190 191 192 193 194 195 196 197 198 199 200

Yt -0.953 -2.062 -3.307 -4.017 -3.757 -1.736 -0.751 0.975 2.082 1.199 -0.719
PPR -0.909 -1.239 -1.567 -2.255 -4.230 -2.370 -0.707 -0.149 1.096 1.878 0.540
ANN -0.855 -0.451 -1.462 -2.062 -4.046 -2.506 -0.626 0.200 1.364 2.153 0.349
Linear -0.863 -0.425 -1.503 -2.359 -2.762 -2.340 -0.617 -0.199 1.122 1.677 0.613

9.4 (a) Figure 9.6 shows a plot of the series. Figure 9.7 contains plots of the function
f2(p) (p = 1, . . . , 10), defined in (9.10), for the conditional mean (black solid
line), the conditional median (red medium dashed line), and the conditional
mode (blue dotted line), based on the set of observations {Yt}289

t=230. As can
be seen in all cases f2(p) seems to stabilize, starting from a Markov coefficient
p = 1. For the conditional mean and the conditional median, however, the two
plotted lines are almost indistinguishable. Based on arg minp f2(p), we have
p = 1 for the conditional mean, and p = 3 for both the conditional median and
the conditional mode. Note that the values of f2(p) are much larger for the
conditional mode than for the other two predictors, indicating that for this set
of observations the values of the conditional mode are far off from the observed
values. The minimum values of the functions f1(p) and f3(p) confirm the choice
p = 3 for the conditional median and the conditional mode, and the choice p = 1
for the conditional mean.

(b) The out-of-sample forecast results for each method are displayed in Table 9.2.
Recall, the MSFE and RMAFE forecasting measures are respectively defined as

Table 9.2: Old Faithful geyser data set. Forecast results for the conditional mean, the
conditional median, the conditional mode, and a naive forecasting rule; based on observations
up to and including eruption number t = 289, and forecast horizon H = 1, . . . , 10.

Eruption number (t) MSFE RMAFE
290 291 292 293 294 295 296 297 298 299

Waiting time (Yt) 87 51 78 54 87 52 85 58 88 79
Duration 1.57 4.41 1.56 4.25 2.08 4.05 2.04 4 4 2
Y Mean

289+H|289 85.36 61.97 81.01 65.05 77.59 67.77 77.88 66.96 76.27 70.18 93.80 13.72

Y Mdn
289+H|289 85.18 58.30 82.31 63.32 80.16 72.27 80.16 69.05 78.01 72.27 91.04 13.07

Y Mode
289+H|289 84.82 53.64 83.03 53.64 81.95 76.93 80.52 78.73 80.16 80.88 119.89 12.08

Naive forecast 55 80 55 80 55 80 55 80 80 55 690.20 37.46
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Figure 9.6: Waiting time between the starts of successive eruptions of the Old Faithful
geyser, Wyoming, August 1, 1985 – August 15, 1985; T = 299.

follows:

MSFE =
1

Hmax

Hmax∑

H=1

(
Ŷ

(∙)
T+H|T − YT+H

)2
,

RMAFE =
1

Hmax

Hmax∑

H=1

|Ŷ (∙)
T+H|T − YT+H |

|YT+H |
× 100,

where Ŷ
(∙)
T+H|T denotes the conditional mean, the conditional median, or the

conditional mode based on observations up till and including time t = T .

Clearly, the conditional mode performs the best as judged by the RMAFE. Of
course, this result should be interpreted with care since it heavily depends on
the last observed value. So, we cannot generalize our conclusion to apply to all
starting values and forecast horizons. In fact, it is easy to verify that the condi-
tional mode still outperforms the conditional mean and the conditional median
when 10-steps ahead forecasts are based on observations up to and including
eruption number t = 288.

(c) Consider the following two methods for constructing a forecast interval (FI).

i. Conditional percentile interval (see also Section 10.3.1 of the main text):
Let ξ̂q(x) = inf{z : F̂ (z|x) ≥ q} be the nonparametric estimate of ξq(x) as
defined by (9.6), where F̂ (∙|x) is a nonparametric estimator of the condi-
tional distribution function. From Gannoun (1990) it is known that ξ̂q(x)
converges uniformly and pointwise (on a compact set) to ξq(x). So for
each H, it is easy to compute a 100%(1 − α) FI with α ∈ [0, 1] (Note the
change in notation, i.e. α ≡ q). This leads to the same interval for the three
nonparametric forecasting methods.

ii. Empirical method : Assume that future forecast errors have the same dis-
tribution function as the distribution function of the past forecast errors,
then FIs for future forecasts can be based on the EDF of the past fore-
cast errors. In particular, for H ∈ {1, . . . , Hmax} and j ∈ {T − r, . . . , T },
with r a preselected large number, calculate the relative error ERj(H) =

|Y (∙)
j+H−Yj+H |/|Yj+H |. Then, for each H, classify the r ERj(H)’s by increas-

ing order and take the (1 − α) one. This value is the (1 − α)th empirical
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Figure 9.7: Old Faithful geyser data set. The estimated function f2(p) (p = 1, . . . , 10) for
the conditional mean, conditional median, and conditional mode: based on the time series
{Yt}289

t=230.

conditional quantile, denoted by ξ̃(1−α)(H). It is a natural estimator of
ξ(1−α)(H) defined by

P
( |Ŷ (∙)

j+H|j − Yj+H |

|Y (∙)
j+H|j |

≤ ξ(1−α)(H)
)

= 1 − α.

Obviously, for large values of r the estimates ξ̃(1−α)(H) become more reli-
able.

(d) The results of the naive forecast rule are listed in the last row of Table 9.2. The
MSFE and RMAFE results for this rule are dramatically larger than those based
on the other three methods. Hence, the effectiveness of the naive forecasting rule
is questionable.

The following MATLAB functions yield the forecasting results reported in rows 3 – 5
of Table 9.2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 9.4
% File: cond_mean.m
% Coded by: Dawit Zerom
%
% Computing conditional MEAN forecasts.
%
% Reference:
% De Gooijer, J.G. and Zerom, D. (2000).
% Kernel based multi-step-ahead prediction of the U.S. short-term
% interest rate. Journal of Forecasting, 19(4), 335-353.
% DOI: 10.1002/1099-131x(200007)19:4\%3C335::aid-for777\%3E3.3.co;2-v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load = waiting.dat;
datan = waiting;
[nr,nc] = size(datan);
data1 = datan;
k = 1; % Maximum Markov order
mx = 10; % Maximum forecast horizon
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x1 = data1(k:nr);
data = x1;
z = data;
n2 = 289; % Start data set Geyser-waiting time
n3 = 289; % End data set
df = n3-n2+1;
n = n2;
while n<=n3

m = 1;
while m<= mx

n0 = n-m;
y = z(m+1:n,1);
x0 = z(1:n0);
sd = std(data1(1:n));
hop = (sd)*((n)^(-1/(k+4))); % Optimal bandwidth
sum1 = 0;
sum2 = 0;
for t1 = 1:n0

vect1 = (z(n)-x0(t1))/hop;
xx = vect1*vect1';
% Gaussian kernel
sum1 = sum1+(exp(-0.5*xx))*((2*pi)^(-k/2));
vect2 = (y(t1)*(exp(-0.5*xx))*((2*pi)^(-k/2)));
sum2 = sum2+vect2;

end
if(sum1 == 0)

sum1 = 1.0e-300;
end
ztmean(n,m) = sum2/sum1; % mth-step ahead forecast (until mx)

% made at time t=n=n2
dif(n,m) = data1(n+m,1)- ztmean(n,m);
m = m+1;

end
n = n+1;

end
dif_mean = dif(n2:n3,1:mx); % Resize matrix
MSFE_mean = sum(dif_mean*dif_mean')/mx;
RMAFE_mean = (100/mx)*sum(abs(dif_mean)'./abs(data1(n2+1:nr,1)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 9.4
% File: cond_median.m
% Coded by: Dawit Zerom
%
% Computing conditional MEDIAN forecasts.
%
% Reference:
% De Gooijer, J.G. and Zerom, D. (2000).
% Kernel based multi-step-ahead prediction of the U.S.
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% short-term interest rate.
% Journal of Forecasting, 19(4), 335-353.
% DOI: 10.1002/1099-131x(200007)19:4\%3C335::aid-for777\%3E3.3.co;2-v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load = waiting.dat;
datan = waiting;
[nr,nc] = size(datan);
data1 = datan;
k = 1; % max Markov order
mx = 10; % maximum forecast horizon
x1 = data1(k:nr);
data = x1;
z = data;
n2 = 289; % Start data set Geyser-waiting time
n3 = 289;
df = n3-n2+1;
n = n2;
while n<=n3

m = 1;
while m<=mx;

n0 = n-m;
y = z(m+1:n,1);
x0 = z(1:n0);
sd = std(data1(1:n));
hop = (sd)*((n)^(-1/(k+4))); % optimal bandwidth
a = min(y)-3*hop;
b = max(y)+3*hop;
step = (b-a)/256;
for l = 1:256;

sum1 = 0;
sum2 = 0;
t1 = 1;
while t1 <= n0;

vect1 = (z(n)-x0(t1))/hop;
xx = vect1*vect1';
sum1 = sum1+(exp(-0.5*xx))*((2*pi)^(-k/2));
if y(t1) <= (a+l*step)

vect2 = (z(n)-x0(t1))/hop;
xx2 = vect2*vect2';
sum2 = sum2+(exp(-0.5*xx2))*((2*pi)^(-k/2));

end
t1 = t1+1;

end
if(sum1 ==0 )

sum1 = 1.0e-300;
end
if (sum2/sum1) > 0.5 % Median

break
end
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end
ztmedian(n,m) = a+l*step;
dif(n,m) = data1(n+m,1)-ztmedian(n,m);
m = m+1;

end
n = n+1;

end
dif_median = dif(n2:n3,1:mx); % Resize matrix
MSFE_median = sum(dif_median*dif_median')/mx;
RMAFE_median = (100/mx)*sum(abs(dif_median)'./abs(data1(n2+1:nr,1)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 9.4
% File: cond_mode.m
% Coded by: Dawit Zerom
%
% Computing conditional MODE forecasts.
%
% Reference:
% De Gooijer, J.G. and Zerom, D. (2000).
% Kernel based multi-step-ahead prediction of the U.S. short-term
% interest rate. Journal of Forecasting, 19(4), 335-353.
% DOI: 10.1002/1099-131x(200007)19:4\%3C335::aid-for777\%3E3.3.co;2-v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load = waiting.dat;
datan = waiting;
[nr,nc] = size(datan);
data1 = datan;
k = 1; % Maximum Markov order
mx = 10; % Maximum forecast horizon
x1 = data1(k:nr);
data = x1;
z = data;
n2 = 289; % Start data set Geyser-waiting time
n3 = 289;
df = n3-n2+1;
n = n2;
while n <= n3;

m = 1;
while m <= mx;

n0 = n-m;
y = z(m+1:n,1);
x0 = z(1:n0);
sd = std(data1(1:n));
hop = (sd)*((n)^(-1/(k+4)));
a = min(y)-3*hop;
b = max(y)+3*hop;
step = (b-a)/256;
sum1 = 0;
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sum2 = 0;
i = 1;
while i <= n0;

vect1 = (z(n)-x0(i))/hop;
xx = vect1*vect1';
vect2 = (a-y(i))/hop;
xx2 = vect2*vect2';
sum1 = sum1+...
(exp(-0.5*xx2))*((2*pi)^(-k/2))*(exp(-0.5*xx))*((2*pi)^(-k/2));
sum2 = sum2+(exp(-0.5*xx))*((2*pi)^(-k/2));
i = i+1;

end
if(sum2==0)

sum2 = 1.0e-300;
end
summax = (sum1/sum2);
ymax = a;
l = 1;
while l <= 256;

y1 = a+l*step;
sum1 = 0;
sum2 = 0;
i = 1;
while i <= n0;

vect1 = (z(n)-x0(i))/hop;
vect2 = (y1-y(i))/hop;
xx = vect1*vect1';
xx2 = vect2*vect2';
sum1 = sum1+...
(exp(-0.5*xx))*((2*pi)^(-k/2))*(exp(-0.5*xx2))*((2*pi)^(-k/2));
sum2 = sum2+(exp(-0.5*xx))*((2*pi)^(-k/2));
i = i+1;

end
if(sum2==0)

sum2 = 1.0e-300;
end
sumy = (sum1/sum2);
if(sumy > summax);

summax = sumy;
ymax = y1;

end
l = l+1;

end
ztmode(n,m) = ymax;
dif(n,m) = data1(n+m,1)-ztmode(n,m);
m = m+1;

end
n = n+1;

end
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Table 9.3: Comparison of MSFEs for H = 1, 10 and 20 steps ahead forecasts made with
glmboost, gamboost, MARS, and VAR (unrestricted) for the hourly river flow – rainfall
data set; based on 15 forecast results. For each H, blue-typed numbers indicate the lowest
MSFE.

H glmboost gamboost MARS VAR

1 99.543 149.834 286.340 120.518
10 1890.600 1830.708 1208.053 1463.838
20 190.495 159.390 75.380 193.327

dif_mode = dif(n2:n3,1:mx); % Resize matrix
MSFE_mode = sum(dif_mode*dif_mode')/mx;
RMAFE_mode = (100/mx)*sum(abs(dif_mode)'./abs(data1(n2+1:nr,1)));

9.5 (a) Table 9.3 shows the MSFEs of the four forecasting methods. Apparently, for
short-term (H = 1) forecasting, glmboost outperforms the other three forecast-
ing methods. MARS performs comparably good for H = 10 and H = 20. The
forecasting performance of VAR (unrestricted) is about the same as glmboost
and gamboost, but is not superior to MARS for 10 and 20 time periods ahead.
Note, however, that the inclusion of one exogenous variable in the model means
that boosting and MARS deal with 24 covariates (12 lags for each covariate).

To allow for a more closer comparison between the four forecasting methods,
Figure 9.8 shows boxplots of the average squared forecast errors. For H = 1,
MARS has the largest outliers at time points t = 373 and t = 374. Also,
glmboost and gamboost have outlying forecast errors at these particular time
points. We see that MARS is superior to the other forecasting methods for
H = 10 and H = 20, both in terms of lowest mean and lowest median forecast
errors.

(b) For H = 1, the MSFEs of the two univariate boosting methods are larger than
those given in Table 9.3 with values 165.285 (glmboost) and 221.157 (gamboost).
For MARS the MSFE equals 190.586 which is much smaller than the MSFE
value obtained with this forecasting method with lagged values of {(Yt, Xt)}.
For H = 10 and H = 20, the three univariate forecasting perform equally well
as their bivariate counterparts. So, the variable rainfall as an additional covariate
does not necessarily improve the forecasting quality.

#######################################################################
# R code: Exercise 9.5
# File: boost.r
#######################################################################
rm(list = ls(all = T))
library(GAMBoost)
library(mboost)
library(vars)
library(mda)
library(zoo)
source("c:/.../boost_nlar//analysis/functions/helpers-forecasting.R")
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Figure 9.8: Boxplots of the averaged squared forecast errors, based on 15 forecasts, for
H= 1, 10, and 20 of the river flow – rainfall data set.

source("c:/.../boost_nlar/./analysis/functions/helpers-general.R")
source("c:/.../boost_nlar//analysis/functions/f-VAR.R")

Flowtot <- read.table("c:/.../flow.dat", quote="\"")
FLtot401 <- ts(Flowtot,freq=1)
Raintot <- read.table("c:/.../rain.dat", quote="\"")
RNtot401 <- ts(Raintot,freq=1)

####### Defaults #############################
setup <- list(ychar = "FLtot401",

xchar = c("FLtot401","RNtot401"),
iniend = c(366,1),
maxLag = 12,
hors = c(1, 10, 20))

lsstp <- list(setup)

####### Parameter sets #######################
parset.glmboost <- list(method = "glmboost",

mstop = 500,
dummy = FALSE)

parset.gamboost <- list(method = "gamboost",
df = 3.5,
knots = 20,
mstop = 500,
dummy = FALSE)

parset.mars <- list(method = "mars",
penalty = "log")

parset.VAR <- list(method = "VAR",
maxLag = setup$maxLag,
restrict = FALSE,
hor = NULL,
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iter = FALSE)

####### mboost with input variable ############
lsglmFLtot2 <- lapply(lsstp,function(z) dir.paradigm(z,parset.glmboost))
lsgamFLtot2 <- lapply(lsstp,function(z) dir.paradigm(z,parset.gamboost))
lsmarsFLtot2 <- lapply(lsstp,function(z) dir.paradigm(z,parset.mars))
lsvarFLtot2 <- lapply(lsstp,function(z) dir.paradigm(z,parset.VAR))

Chapter 10

10.1 (a) Clearly, f3(x) = ∫ b+ωx1/2

a+ωx1/2 f2(y)dy, where simple calculations gives

f2(x)=
∫ b+ωx1/2

a+ωx1/2

f1(y)dy=
a + b

2
+

2ω

3(b − a)

[
(b + ωx1/2)3/2 − (a + ωx1/2)3/2

]
.

with f1(x) = (a + b)/2 + ωx1/2. Using Mathematica4 (a symbolic mathematical
computation program), we obtain

∫ b+wx1/2

b+wx1/2

(
a + wy1/2

)3/2
dy =
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√
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and
∫ b+wx1/2
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.

Combining and rewriting the last expressions gives the required result, after
substitution in f3(x).

(b) With x − ωx1/2 − a = 0 and x − ω1/2 − b = 0, we have

α2 = x2
a = (ω +

√
ω2 + 4a)/2, and β2 = x2

b = (ω +
√

ω2 + 4b)/2.

Furthermore,

g1(x) = ωx + (a + b)/2, g2(x) = ω(
√

ωx + (a + b)/2) + (a + b)/2, and

g3(x) = ω
√

g2(x) + (a + b)/2.

4Mathematica is a registered trademark of Wolfram, Corp.
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Figure 10.1: Forecast functions gH(x) (blue medium dashed lines) for the naive (SK)
forecasting method and fH(x) (black solid lines) for the exact LS forecast method; H = 2
and 3.

Thus, in case (i) (ω = 1, a = 0, b = 1) α = 1 and β = 2.618, and in case (ii)
(ω = 1, a = 0, b = 100) α = 1 and β = 110.512.

Figures 10.1(a) – (d) show the forecast functions gH(x) (blue medium dashed
lines) and fH(x) (black solid lines) (H = 2 and 3) for each case separately. In
all cases, the differences between the naive method and the exact LS method is
small. In Figure 10.1(d), we see that all forecasts with Yt ∈ [0, 110.512] are very
near to (a + b)/2 + ω

√
x ≈ 57. So, also in this case the forecasts obtained by

both methods are practically the same.

10.2 (a) We consider separately the cases Yt ≤ r, and Yt > r as this will influence the
form of μ(∙; θ). Moreover, in each case the range of integration will need to be
decomposed into two sub-ranges depending on the value of Yt+1 as this in turn
influences the form of μ(Yt+1; θ).

Case 1: Suppose Yt ≤ r, so that μ(Yt; θ) = φ1Yt and relation (10.6) becomes

Yt+2|t =
∫ r

−∞
φ1Yt+1g(Yt+1 − φ1Yt)dYt+1 +

∫ ∞

r

φ2Yt+1g(Yt+1 − φ1Yt)dYt+1

=
∫ r

−∞
φ1{φ1Yt + εt}g(Yt+1 − φ1Yt)dYt+1

+
∫ ∞

r

φ2{φ1Yt + εt}g(Yt+1 − φ1Yt)dYt+1.
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Using the SETAR specification and changing the variable of integration we have

Yt+2|t =
∫ r−φ1Yt

−∞
{φ2

1Yt + φ1εt+1}g(εt+1)dεt+1

+
∫ ∞

r−φ1Yt

{φ1φ2Yt + φ2εt+1}g(εt+1)dεt+1.

Noting that g(εt) = (1/σε)ϕ(εt/σε), we get

Yt+2|t = φ2
1YtΦ

(r − φ1Yt

σε

)
− φ1σεϕ

(r − φ1Yt

σε

)

+ φ1φ2Yt

[
1 − Φ

(r − φ1Yt

σε

)]
+ φ2σεϕ

(r − φ1Yt

σε

)

= {φ1p(1) + φ2(1 − p(1))}Yt+1|t + (φ2 − φ1)σe,t+1ϕ
(r − Yt+1|1

σe,t+1

)
,

where

p(i) = Φ
(r − φiYt

σe,t+1

)
(i = 1, 2).

Case 2: Suppose Yt > r, so that μ(Yt; θ) = φ2Yt. Then, following similar
arguments as in the first case, the optimal least squares two-step ahead predic-
tion conditional on Yt is given by Yt+2|t in case 1, but now with Yt+1|t = φ2Yt.
Then combining both expressions gives the required result for the exact two-step
ahead MMSFE forecast.

We observe from both cases that the two-step point forecast is a weighted average
of the forecasts from regime 1, Yt+1|t = φ1Yt and regime 2, Yt+1|t = φ2Yt where
the weights p(1) and 1−p(1) are respectively the probabilities of the process being
in the lower and higher regime at time t, assuming normality of the forecast
error. We also note that if φ1 = φ2 = φ, so the SETAR(2; 1, 1) model reduces
to a linear AR(1) model, the nonlinearity of the prediction disappears and the
result reduces to the usual expression of φ2Yt.

(b) Similar as in part (a) we have

E(Y 2
t+2|Yt) =

∫ ∞

−∞
E(Y 2

t+1|Yt)g
(
Yt+1 − λ(Yt)

)
dYt+1,

where E[
(
φiYt+1 + εt+1

)2
|Yt+1] = φ2

i Y
2
t+1 + σ2

ε with i = 1 if Yt+1 ≤ r and i = 2
if Yt+1 > r. Then we have

E(Y 2
t+2|Yt) =






(1 + φ2
2)σ

2
ε + φ2

1φ
2
2Y

2
t + (φ2

1 − φ2
2)(σ

2
ε + φ2

1Y
2
t )p1

−σε(φ2
1 − φ2

2)(r + φ1Yt)ϕ
(

r−φ1Yt

σε

)
if Yt ≤ r,

(1 + φ2
2)σ

2
ε + φ4

2Y
2
t + (φ2

1 − φ2
2)(σ

2
ε + φ2

2Y
2
t )p2

−σε(φ2
1 − φ2

2)(r + φ2Yt)ϕ
(

r−φ2Yt

σε

)
if Yt > r.

Combining the results from the two regimes gives the required expression of the
second-order conditional moment of Yt+2 given Yt with σ2

t+1|t = σ2
ε . Note that

setting φ1 = φ2 = φ gives the variance σ2
t+2|t = E(Y 2

t+2|Yt) − E2(Yt+2|Yt) =

(1+ φ2)σ2
ε which is the two-step ahead variance of the forecast error for a linear

AR(1) model with parameters φ and σ2
ε .
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(c) As Yt → ±∞ the fourth and fifth term in the expression for σ2
t+2|t will tend to

zero. The limiting values are determined from the first two terms and partly
from the third term. That is, from the expression

σ2
εΦ
(
zt+1|t

)
+ σ2

εΦ
(
− zt+1|t

)
+ {φ2

1Φ
(
zt+1|t

)
+ φ2

2Φ
(
− zt+1|t

)
}σ2

ε

= σ2
ε{1 + φ2

1}Φ
(
zt+1|t

)
+ σ2

ε(1 + φ2
2) − σ2

ε{1 + φ2
2}Φ

(
zt+1|t

)
.

Assume Yt ≤ r and φ1 > 0. Then it is unlikely (Φ(∙) → 0) that the process will
move out of the first regime (−∞, r] and so the path taken is influenced solely
by the first sub-model. Therefore, the two-step ahead forecast variance matches
that of a linear AR(1) model with parameters φ1 and σ2

ε , i.e. σ2
t+2|t = σ2

ε{1+φ2
1}.

If, however, φ1 < 0, Φ(∙) → 0, so that σ2
t+2|t = σ2

ε{1 + φ2
2}.

Now assume Yt > r and φ2 > 0. In this case the same argument as above will
apply if Yt → ∞ (i.e. Φ(∙) → 0), leading to σ2

t+2|t = σ2
ε{1 + φ2

2} which matches

that of a linear AR(1) model with parameters φ2 and σ2
ε . If, however, φ2 < 0

then it is most likely (Φ(∙) → 1) that the process moves into the second regime
[r, ∞) and the future path would now depend on the second sub-model, leading
to the same variance as that of an AR(1) process with parameters φ1 and σ2

ε .

10.3 (a) We start off with a slightly more general model specification than in Example
10.1 of the main text, i.e. we assume that {Yt, t ∈ Z} follows the piecewise
constant SETAR model:

Yt = αi + εt, if Yt−1 ∈ (ri−1, ri] = R(i) (i = 1, 2, . . . , k).

Here, −∞ = r0 < r1 < ∙ ∙ ∙ < rk = ∞ are the threshold values, and {εt, t ∈ Z} is
a sequence of zero mean i.i.d. random variables having an absolute continuous
pdf g(∙), and distribution function G(∙), and finite variance σ2

ε . Underlying the
above model is a Markov chain Mt with states {1, 2, . . . , k}, where Mt = i if and
only if Yt ∈ R(i). The transition probability matrix P of the process {Mt} has
elements

pij = P(Mt = i|Mt−1 = j) = G(ri − αj) − G(ri−1 − αj).

Under fairly weak conditions on the parameters and the noise distribution, the
process {Mt} will be ergodic and will possess a stationary distribution denoted
by the row vector π = (π1, π2, . . . , πk). This is the unique solution to the system
π = πP with

∑k
i=1 πi = 1. Let us assume that P has distinct eigenvalues

1 = λ1, λ2, . . . , λk, where |λi| < 1 (i ≥ 2) under the assumptions on {Mt}.
Let the corresponding right (left) eigenvectors be e1, e2, . . . , ek (d1,d2, . . . ,dk),
normalized so that d′

iej = δij , Kronecker’s delta.

Let fH,i(y|y) denote the H-step predictive pdf of Yt+H (H ≥ 1) given that
Yt ∈ R(i). When H = 1, it is easy to check that f1,i(y|y) = g(y−αi). The k× 1
vector fH(y|y) with ith element fH,i(y|y) satisfies the equation

fH(y|y) = PfH−1(y|y) = Pm−1f1(y|y) (H ≥ 2),

as can be easily seen on applying the law of total probability. The stationary
marginal pdf is also easily derived to be

f(y) =
k∑

i=1

πig(y − αi).
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Thus, the mean of {Yt, t ∈ Z} is given by μY =
∑k

i=1 πiαi and its variance is
given by σ2

Y = σ2
ε − μ2

Y +
∑k

i=1 πiα
2
i .

Let μH,i(y|y) = E(Yt+H |Yt ∈ R(i)), and μH(y|y) the k × 1 vector with ith
element μH,i(y|y). Then the conditional mean is given by

μH(y|y) = Pm−1μ1(y|y) =
k∑

i=1

λm−1
i eid

′
iα,

where in the second step we used the spectral decomposition of P and α =
(α1, . . . , αk)′.

Now, consider the SETAR(2; 0, 0) process in Example 10.1 of the main text with

α1 = −α2 ≡ α, and {εt}
i.i.d.
∼ N (0, 1). Thus, in the present case, the transition

matrix P reduces to a 2 × 1 vector w with elements
(
Φ(ri − α) − Φ(ri−1 + α)

)

(i = 1, 2) where −∞ = r0 < r1 < r2 = ∞. Let w
(H)
i (i = 1, 2) denote the

elements of the vector wH−1. Then it is easy to see that (10.9) and (10.10)
follow from the above results.

(b) From (10.9) we have

μi,Y = E(Y i
t ) =

1
2

{∫ ∞

−∞
(y + α)iϕ(y)dy +

∫ ∞

−∞
(y − α)iϕ(y)dy

}
.

On expanding (y ± α)i) in a binomial form for each value of i (i = 1, 2, . . .)
and using the results ∫∞−∞ y2nϕ(y)dy = (2n − 1)!! and ∫∞−∞ y2n+1ϕ(y)dy = 0
(n = 0, 1, . . .), the ith moment follows directly. Hence, E(Yt) = 0, Var(Yt) =
E(Y 2

t ) = (1 + α2). Moreover, E(Y 3
t ) = 0, and E(Y 4

t ) = 3 + α2 + α4.

Denote the pdf of Yt−1 by f(yt−1), and the joint pdf of Yt and Yt−1 by g(yt, yt−1) =
h(yt|yt−1)f(yt−1), with h(yt|yt−1) the conditional pdf of Yt given Yt−1 = yt−1.
Then the autocovariance at lag ` = 1 is given by

γY (1)=
∫ ∞

−∞

∫ ∞

−∞
ytyt−1g(yt, yt−1)dytdyt−1

=
∫ 0

−∞

∫ ∞

−∞
ytyt−1g(yt, yt−1)dytdyt−1+

∫ ∞

0

∫ ∞

−∞
ytyt−1g(yt, yt−1)dytdyt−1

=
∫ 0

−∞
yt−1f(yt−1)E(Yt|Yt−1 ≤ 0)dyt−1

+
∫ ∞

0

yt−1f(yt−1)E(Yt|Yt−1 > 0)dyt−1

= α
{
− ϕ(α) +

1
2
αβ
}
− α

{
ϕ(α) −

1
2
αβ
}

= −2αϕ(α) + α2β,

where β = 1− 2Φ(α). The above result can be easily generalized to autocovari-
ances at lags ` > 1.

(c) Note that

MSFE(Y AR
t+H|t) = E[(Yt+H − Y AR

t+H|t)
2]

= MSFE(Y SETAR
t+H|t ) + (Y AR

t+H|t − Y SETAR
t+H|t )2,
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Figure 10.2: Ratio–MSFE(H) versus Yt for the AR(1) process with parameter φ =
−0.7194 and the SETAR(2; 0, 0) process with parameter a = 1.5.

and

MSFE(Y SETAR
t+H|t ) = E[(Yt+H − Y SETAR

t+H|t )2] = 1 + α2 − (Y SETAR
t+H|t )2.

Then, using Y AR
t+H|t = φHYt, we have the ratio of MSFEs

Ratio–MSFE(H) ≡
MSFE(Y AR

t+H|t)

MSFE(Y SETAR
t+H|t )

= 1 +
(Y AR

t+H|t − Y SETAR
t+H|t )2

MSFE(Y SETAR
t+H|t )

= 1 +
φHYt + αβH−1I(Yt ≤ 0) − αβI(Yt > 0)

1 + α2(1 − β2H−2)
.

(d) From part (b) it follows that ρSETAR
Y (1) = −α

(
2ϕ(α) − αβ)/(1 + α2). Equating

this expression with ρAR
Y (1) = φ, with α = 1.5, it follows that φ ≈ −0.7194.

Figure 10.2 shows plots of Ratio–MSFE(H) versus Yt ∈ [−5, 5] for H = 1, 2,
and 3. Clearly, the ratio of MSFEs is not necessarily a decreasing function in H
at all forecast origins Yt. Ratio–MSFE(H) → 1 as H → ∞, which implies that
the multi-step ahead forecast of the AR(1) process is asymptotically as good as
that of the true nonlinear SETAR(2; 0, 0) process.

10.4 (a) Using expression (10.80), we have for H = 1, 2, . . .,

Y LS
t+H|t = E(Yt+H |Yt) = αHYt +

H∑

j=1

αH−jE(εt+j |Yt)

= αHYt + E(εt)(1 − αH)/(1 − α) = αHYt + μ(1 − αH).

Clearly, E(et+H) = 0, i.e. Y LS
t+H|t is an unbiased forecast of Yt+H . Hence, the

MSFE(H) is given by

MSFE(H) = Var(Yt+H |Yt) = Var(αH−1εt+1 + ∙ ∙ ∙ + εt+H)

=
H∑

j=1

α2(H−j)Var(εt+j) = μ2(1 − α2H),
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where Yt = (Yt, Yt−1, . . .)′.

(b) Let d = μ(1 − α). Then, using expression (10.80), the MAFE of the one-step
ahead LS forecast is given by

MAFE(1) = E(|Yt+1 − αYt − d)|) = E(εt+H − d)

= αE{| − d|} + (1 − α)E{|Et+1 − d|}.

Now,

E{|Et+1 − d|} = −
∫ d

0

(y − d)
μ

e−y/μdy +
∫ ∞

d

(y − d)
μ

e−y/μdy

= d − μ + 2μe−d/μ.

Substituting for d, the required results follows.

10.5 (a) The summation term in the expression for the sample ACF γ̂∗
d(`) can be re-

expressed as follows

P∑

t=`+1

(dt − d)(dt−` − d) =
P∑

t=`+1

dtdt−` + (P − `)d
2
− d

P∑

t=`+1

dt − d

P∑

t=`+1

dt−`

=
P∑

`+1

dtdt−` + (P − `)d
2
− d
(
Pd −

∑̀

t=1

dt

)

− d
(
Pd −

P∑

t=P−`+1

dt

)

=
P∑

t=`+1

dtdt−` − (P + `)d
2

+ d
(∑̀

t=1

dt +
P∑

t=P−`+1

dt

)
.

Taking the expectation of each term gives

E
[ P∑

t=`+1

dtdt−`

]
= (P − `)γd(`), E[(P + `)d

2
] = (P + `)Var(d),

E
[
d
(∑̀

t=1

dt +
P∑

t=P−`+1

dt

)]
= E

[ 1
P

P∑

t=1

dt

∑̀

t=1

dt +
1
P

P∑

t=1

dt

P∑

t=P−`+1

dt

]

=
2
P

[ `−1∑

i=1

(` − i)γd(i) +
P−∑̀

i=0

`γd(i) +
`−1∑

i=1

(` − i)γd(P − ` + i)
]
.

Substituting the above results into the expected value of the sample ACF gives

E
(
γ̂∗

d(`)
)

= (P − `)−1{(P − `)γd(`) − (P + `)Var(d)

+ 2P−1[
`−1∑

i=1

(` − i)γd(i) +
P−∑̀

i=0

`γd(i) +
`−1∑

i=1

(` − i)γd(P − ` + i)]}

= γd(`) − (P − `)−1(P + `)Var(d) + O(P−2).

Assuming that P is large relative to `, we have E
(
γ̂∗

d(`)
)
≈ γd(`) − Var(d).
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(b) If the process {dt, t ∈ Z} is WN, it follows that Var(d) = P−1γd(0) and γd(`) = 0
for ` 6= 0. Hence, from the results in part (a), we have

E
(
γ̂∗

d(`)
)

= γd(`) − (P − `)−1(P + `)Var(d)

+
2

P (P − `)

[ `−1∑

i=1

(` − i)γd(i) +
P−∑̀

i=0

`γd(i) +
`−1∑

i=1

(` − i)γd(P − ` + i)
]

= γd(`) − (P − `)−1(P + `)Var(d) + 2P−1(P − `)−1`γd(0)

= γd − (P − `)−1
(
(P + `) − 2`

)
Var(d) = γd(`) − Var(d)

=

{
γd(0) − Var(d) ` = 0,

−Var(d) ` 6= 0.

This time no approximation is necessary due to the nature of the WN process {dt, t ∈
Z}.

10.6 (a) The one-step ahead combined forecast error can be written as

eC
T+1|T = YT+1|T − Y C

T+1|T

= wYT+1|T + (1 − w)YT+1|T − {wY1,T+1|T + (1 − w)Y2,T+1|T }

= we1,T+1|T + (1 − w)e2,T+1|T .

The variance of eC
T+1|T is given by Var(eC

T+1|t) = w2σ2
1,e +(1−w)2σ2

2,e +2w(1−
w)σ12. This expression attains a minimum value if

ω(σ2
1,e + σ2

2,e − 2σ12) − σ2
2,e + σ12 = 0.

Solving this expression for w, we obtain the required result w∗.

(b) Substituting w∗ in Var(eC
T+1|t) gives

σ2
C(w∗) = (w∗)2(σ2

1,e + σ2
2,e − 2σ12) + σ2

2,e − 2w∗(σ2
2,e − σ12)

= σ2
2,e +

(σ2
2,e − σ12)2

σ2
1,e + σ2

2,e − 2σ12
− 2

(σ2
2,e − σ12)2

σ2
1,e + σ2

2,e − 2σ12

= σ2
2,e −

(σ2
2,e − σ12)2

σ2
1,e + σ2

2,e − 2σ12
.

The numerator of the second term is always positive. If ρ12 = 1, we have
σ12 = σ1,eσ2,e. In this case the denominator reduces to (σ1,e − σ2,e)2, which is
always positive. If ρ12 = −1, we have σ12 = −σ1,eσ2,e. Then the denominator
reduces to (σ1,e + σ2,e)2 which is always positive. In fact, for all values of
ρ12 ∈ [−1, 1] the denominator of the second term is positive, including ρ12 = 0.
Hence, σ2

C(w∗) < σ2
2,e. The equality σ2

C(w∗) = σ2
2,e holds if σ2

2,e = σ12. This
implies that w∗ = 0, and hence Y C

T+1|T ≡ Y2,T+1|T .

(c) Assume σ12 = 0, which implies that ρ12 = 0. Then w∗ = σ2
2,e/(σ2

1,e + σ2
2,e). If

σ2
1,e → 0, we see that w∗ → 1. In other words, almost all weight is given to the

first forecast Y1,T+1|T . Similarly, if σ2
2,e → 0, we see that w∗ → 0., i.e. almost

all weight is given to the second forecast Y2,T+1|T .
Now, assume ρ12 = 1. So, w∗ = σ2,e/(σ2,e − σ1,e). If σ2,e → 0, we have w∗ → 0.
In this case almost all weight is given to the second forecast. In contrast, if
σ1,e → 0, we have w∗ → 1. A similar observation follows for the case ρ12 = −1.
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(d) Given the T − 1 forecast errors, consistent estimates of σ2
1,e ≡ σ2

11, σ2
2,e ≡ σ2

22,

and σ12 can be obtained as σ̂ij = (1/(T − 1))
∑T−1

t=1 e1,t+1|te2,t+1|t. Substitution
in w∗ gives an estimate of the optimal weight.

10.7 Note that {Yt, t ∈ Z} is a first order Markov process. It is easily verified that for all
i ∈ Z, the conditional expectation of a pth order Markov process {Yt, t ∈ Z} is given
by

E
(
g(Yi)|Yt, t 6= i

)
= E

(
g(Yi)|Yt, t 6= i, |t − i| ≤ p

)
,

for all bounded measurable functions g(∙) on R. Then, in view of this result, it is
obvious that E(Yi|Y−i) = E(Yi|Yi−1, Yi+1). For ease of exposition, we consider the
case Yi−1 ≥ 0. Thus, we obtain

Ŷi = E(Yi|Yi−1, Yi+1)

=
∫ ∞

−∞
yif(yi|Yi−1, Yi+1)dyi

=
∫ ∞

−∞
yi

f(Yi+1|yi)f(yi|Yi−1)
f(Yi+1|Yi−1)

dyi

=
1

f(Yi+1|Yi−1)

(∫ ∞

0

yiϕ1(Yi+1 − φ1yi)ϕ1(yi − φ1Yi−1)dyi

+
∫ 0

−∞
yiϕ2(Yi+1 − φ2yi)ϕ1(yi − φ1Yi−1)dyi

)
,

where ϕj(∙) is the density function of N (0, σ2
j ) (j = 1, 2), and f(Yi+1|Yi−1) is the

conditional density function of Yi+1 given Yi−1, i.e.

f(Yi+1|Yi−1) =
∫ ∞

−∞
f(Yi+1, yi|Yi−1)dyi

=
∫ ∞

−∞
f(Yi+1|yi)f(yi|Yi−1)dyi

=
∫ ∞

0

ϕ1(Yi+1 − φ1yi)ϕ1(yi − φ1Yi−1)dyi

+
∫ 0

−∞
ϕ2(Yi+1 − φ2yi)ϕ1(yi − φ1Yi−1)dyi.

The integrals in the expression for Ŷi follow by routine calculation. A similar result
can be obtained for the case Yi−1 < 0. Finally, on combining, the required result
follows.

Remark: Clearly, the conditional expectation can become a complicated expression
for a simple NLAR model when there is only one missing observation. An alternative
to the estimation of missing values, is to treat these values as parameters. Then,
for instance, the likelihood function can be maximized with respect to the missing
observations.

10.8 (a) Generally, σ2
t+2|t attains its largest value as there is most uncertainty about the

regime of Yt+1 in which the intermediate step lies. This is clearly seen in Figure
10.9(a) of the main text where two maxima occur in the variance function.
On the other hand, in Figure 10.9(b) of the main text there is virtually no
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φ2
1Yt + φ1εt+1 + εt+2

φ1φ2Yt + φ2εt+1 + εt+2

φ2φ1Yt + φ1εt+1 + εt+2

φ2
2Yt + φ2εt+1 + εt+2

Figure 10.3: Tree diagram of all possible paths from Yt to Yt+2.

uncertainty about the regime of Yt+1 whenever Yt < −2 and the uncertainty
diminishes monotonically from Yt ≥ −2.

Starting at Yt, the uncertainty about the future trajectories of the process de-
pends on the parameter values of the model and the values of the process
{εt}. The tree diagram shows all possible routes (paths) the SETAR pro-
cess can take from Yt to Yt+2. Now, consider the SETAR process in Figure
10.9(a) with φ1 = 0.8 and φ2 = −0.4. Assume that the series value at the
forecast origin is Yt = +7. Then the one-step ahead forecast Yt+1|t is about
φ2Yt = −0.4× 7 = −2.8. Hence, there is a good deal of uncertainty as to which
path (sub-model) the process will take to forecast further. Now, assume εt+1

takes a value less than 0.8. Then the value of the two-step ahead forecast Yt+2|t

is less than φ2φ1Yt + φ1εt+1 = (−0.4 × 0.8) × 7 + 0.8 × 0.8 = −1.6. If, how-
ever, εt+1 > 0.8 it is likely that the two-step ahead forecast will be above the
threshold value. Thus, there is a substantial difference between the two possible
forecasts and this leads to a large expected variance along with a large final
two-step ahead forecast variance.

(b) The two-step ahead forecast can be written as

Yt+2|t = {φ1Φ(u) + φ2

(
1 − Φ(u)

)
}(r − uσε) + (φ2 − φ1)σεψ(u).

Therefore the derivative is given by

dYt+2|t

du
= −φ2σε + {φ1 − φ2}ϕ(u)(r − uσε) − {φ1 − φ2}Φ(u)σε

+ (φ2 − φ1)(−uσε)ϕ(u)

= −φ2σε + (φ1 − φ2){rϕ(u) − σεΦ(u)}.
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Similarly the two-step ahead forecast variance can be written as

σ2
t+2|t = (1 + φ2

2)σ
2
ε + φ2

2(r − uσε)2 + {φ2
1 − φ2

2}Φ(u){(r − uσε)2 + σ2
ε}

+ (φ2
2 − φ2

1)(2r − uσε)σεϕ(u) − Ŷ 2
t+2|t.

Hence,

dσ2
t+2|t

du
= −2φ2

2σε(r − uσε) + {φ2
1 − φ2

2}ϕ(u){(r − uσε)
2 + σ2

ε}

− 2σε(φ
2
1 − φ2

2)Φ(u)(r − uσε) − σ2
ε(φ2

2 − φ2
1)ϕ(u)

+ (φ2
2 − φ2

1)(2r − uσε)
(
− uσεϕ(u)

)
− 2Yt+2|t

dYt+2|t

du
.

Solving dσ2
t+2|t/du = 0 numerically for values of the forecast origin in the range

[−12, 12] gives as locations Yt = −2.9 and 5.8 respectively. Both extremes are
in agreement with the locations of the maxima of the two-step ahead forecast
variance function to be inferred from the plot in Figure 10.9(a).

10.9 (a) With Z
i.i.d.
∼ N (0, σ2

Z), and c and M constants, we have

E
(
exp(−c(Z + M)2)

)
=

1
√

2πσ2
Z

∫ ∞

−∞
exp

(
− c(Z + M)2

)
exp

(
−

1
2σ2

Z

Z2
)
dZ

=
1

√
2πσ2

Z

∫ ∞

−∞
exp(−cZ2− 2cMZ− cM2−

1
2σ2

Z

Z2)dZ

=
1

√
2πσ2

Z

exp(−cM2)
∫ ∞

−∞
exp

(
−

1
2

A

σ2
Z

(Z2 + 4
Mcσ2

Z

A
Z)
)
dZ

=
1

√
2πσ2

Z

exp
(
− cM2 +

2c2M2σ2
Z

A

)∫ ∞

−∞
exp

(
−

1
2

A

σ2
Z

(
Z +

2cMσ2
Z

A

)2)
dZ

=
1

√
A

exp(−c1M
2),

where A = 1+2cσ2
Z and c1 = c/A. Let r(Z) be a function of Z. Then it is clear

from the last integration that

E{r(Z) exp
(
− c(Z + M)2

)
} = A−1/2 exp(−c1M

2)E
(
R(V )

)
,

where V
i.i.d.
∼ N (−2cMσ2

Z , σ2
Z/A).

The result in (10.26) of the main text can be rewritten to obtain the expression
for uH . In particular, with U = V + M , it follows that

E(U) = E(V + M) = M −
2c

A
σ2

ZM

=
M

A
(1 + 2cσ2

Z − 2cσ2
Z) =

M

A
, since A = 1 + 2cσ2

Z .

Hence, the required result is given by

E{r(Z + M) exp
(
− c(Z + M)2

)
} = A−1/2 exp(−c1M

2)E
(
R(U)

)
,

where U
i.i.d.
∼ N (M/A, σ2

Z/A).
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Table 10.1: Comparison of MAFE(H) and MSFE(H) for H = 5, 15, and 30-steps ahead
forecasts made with NFE (normal forecast error), SK (skeleton), and LN (linearization); all
numbers should be multiplied by 103.

H MAFE(H) MSFE(H)

SK NFE LN SK NFE LN

5 0.2756 0.2692 0.925 0.4919 0.4646 8.47
15 0.8416 0.8255 4.729 1.5288 1.4688 91.48
30 1.8162 1.7923 10.956 3.4993 3.3938 224.41

(b) Recall from Example 6.1 of the main text that the specified ExpAR(1) model has
two limiting points at ±0.2295, which are stable. So, we expect that values of the
forecasts will oscillate between these two points. The results of the simulation
experiment are summarized in Table 10.1. We also added results of the LN
(linearization) forecasting method to the table. Clearly, the NFE method is best
on both accuracy measures and across all forecast horizons. The SK method is
the next best method, and the LN method is totally inadequate.

10.10 (a) The results in Table 10.3 of the main text can be calculated by means of the
following R code, made available by Li Pan. Note, the computations can be time
consuming.

##################################################################
# R code: Exercise 10.10
# File: Table-10-3.r
#
# Ff = forward with fitted residuals; Fp = forward with predictive
# residuals; "Warming up = 100"; T = 100; B = 1,000; m = 500.
#
# Reference:
# Pan, L. and Politis, D.N. (2016).
# Bootstrap prediction intervals for linear, nonlinear and
# nonparametric autoregressions (with discussion).
# Journal of Statistical Planning and Inference, 177, 1-27.
# DOI: 10.1016/j.jspi.2014.10.003.
##################################################################
f <- function(x){# SETAR(2;1,1) model with d=1, and N(0,1) errors

if(x<=0) return(0.5*x)
if(x>0) return(-0.4*x)

}
sim <- function(f,n){ # Simulation

temp <- rep(0,(n+100))
temp[1] <- 1
e <- rnorm((n+100),0,1) # e <- rt(n+100,df=5) Student t(5)
for (i in 1:((n-1)+100)){

temp[i+1] <- f(temp[i])+e[i+1]
}
u <- temp[101:(100+n)]
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}
bootstrap=function(u,fhat,residuals){

bb = rep(0,(n+100))
bb[1] = u[1]
estar = sample(residuals,(n+101),replace=TRUE)
for (i in 1:(n+99)){

bb[i+1] <- fhat(bb[i])+estar[i+1]
}
b = bb[101:(n+100)]
fv = fhat(u[n])+estar[(n+101)]#X_{n+1}^*
list(b=b,fv=fv)

}
n = 100 # sample size
TAR.sim <- function(f,n){

###### Simulation and model estimation ######
u <- sim(f,n)
x <- u[1:(n-1)]
y <- u[2:n]
idx <- which(x>=0)
if(length(idx)>=2 & length(idx)<=n-3){

fit1 <- lm(y[idx]~x[idx])
fit2 <- lm(y[-idx]~x[-idx])
while(abs(fit1$coef[2])>=1 | abs(fit2$coef[2])>=1){

u <- sim(f,n)
x <- u[1:(n-1)]
y <- u[2:n]
idx <- which(x>=0)
if(length(idx)>n-3){

fit1 <- lm(y[idx]~x[idx])
fit2 <- fit1

}
if(length(idx)<2){

fit2 <- lm(y[-idx]~x[-idx])
fit1 <- fit2

}
if(length(idx)>=2 & length(idx)<=n-3){

fit1 <- lm(y[idx]~x[idx])
fit2 <- lm(y[-idx]~x[-idx])

}
}
fres = c(fit1$resid,fit2$resid)
fhat <- function(x){

if(x>=0) y <- fit1$coef[2]*x+fit1$coef[1]
if(x<0) y <- fit2$coef[2]*x+fit2$coef[1]

}
}
else{

fit <- lm(y~x)
fres <- fit$resid
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while(abs(fit$coef[2])>=1){
u <- sim(f,n)
x <- u[1:(n-1)]
y <- u[2:n]
fit <- lm(y~x)

}
fhat <- function(x) fit$coef[2] * x +fit$coef[1]

}
yhat <- fhat(u[n]) # Fitted value
fres <- fres-mean(fres) # Fitted residuals
sigmahat <- sd(fres) # Sigma
resid <- rep(0,(n-1)) # Predictive residuals
for (i in 1:(n-1)){

xtemp <- x[-i]
ytemp <- y[-i]
idx.temp <- which(xtemp*x[i]>=0)
if(length(idx.temp)>=2){

xtemp <- xtemp[idx.temp]
ytemp <- ytemp[idx.temp]
tempfit <- lm(ytemp~xtemp)

}
else{

tempfit <- lm(ytemp~xtemp)
}
resid[i] <- y[i]-predict(tempfit,data.frame(xtemp=x[i]))

}
pres <- resid-mean(resid)

###### Bootstrap ######
Ffstarhat <- rep(0,1000)
Ffstar <- rep(0,1000)
Fsfsd <- rep(0,1000)
for (i in 1:1000){

result <- bootstrap(u,fhat,fres)
ustar <- result$b
xstar <- ustar[1:(n-1)]
ystar <- ustar[2:n]
idx.star <- which(xstar>=0)
if(length(idx.star)<=n-3 & length(idx.star)>=2){

fitstar1 <- lm(ystar[idx.star] ~ xstar[idx.star])
fitstar2 <- lm(ystar[-idx.star] ~ xstar[-idx.star])
fhatstar <- function(x){

if(x>=0) y <- fitstar1$coef[2]*x+fitstar1$coef[1]
if(x<0) y <- fitstar2$coef[2]*x+fitstar2$coef[1]

}
sigmastar <- sd(c(fitstar1$res,fitstar2$res))

}
else{

fitstar <- lm(ystar~xstar)
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fhatstar <- function(x) fitstar$coef[2]*x+fitstar$coef[1]
sigmastar <- sd(fitstar$res)

}
Ffstarhat[i] <- fhatstar(u[n])
Ffstar[i] <- result$fv
Fsfsd[i] <- (Ffstar[i] -Ffstarhat[i])/sigmastar

}
Fpstarhat <- rep(0,1000)
Fpstar <- rep(0,1000)
Fspsd <- rep(0,1000)
for (i in 1:1000){

result <- bootstrap(u,fhat,pres)
ustar <- result$b
xstar <- ustar[1:(n-1)]
ystar <- ustar[2:n]
idx.star <- which(xstar>=0)
if(length(idx.star)<=n-3 & length(idx.star)>=2){

fitstar1 <- lm(ystar[idx.star] ~ xstar[idx.star])
fitstar2 <- lm(ystar[-idx.star] ~ xstar[-idx.star])
fhatstar <- function(x){

if(x>=0) y <- fitstar1$coef[2]*x+fitstar1$coef[1]
if(x<0) y <- fitstar2$coef[2]*x+fitstar2$coef[1]

}
sigmastar <- sd(c(fitstar1$res,fitstar2$res))

}
else{

fitstar <- lm(ystar~xstar)
fhatstar <- function(x) fitstar$coef[2]*x+fitstar$coef[1]
sigmastar <- sd(fitstar$res)

}
sigmastar <- sd(c(fitstar1$res,fitstar2$res))
Fpstarhat[i]<- fhatstar(u[n])
Fpstar[i] <- result$fv
Fspsd[i] <- (Fpstar[i] -Fpstarhat[i])/sigmastar

}
####### Get the FI interval #######
# Ff (fitted residuals)
Ffdown <- yhat+quantile(Ffstar-Ffstarhat,.025)
Ffup <- yhat+quantile(Ffstar-Ffstarhat,.975)
Ffl <- Ffup-Ffdown
# Fp (predicted residuals)
Fpdown <- yhat+quantile(Fpstar-Fpstarhat,.025)
Fpup <- yhat+quantile(Fpstar-Fpstarhat,.975)
Fpl <- Fpup-Fpdown
# 1,000 future values
truevalue <- f(u[n]) + rnorm(1000)
Ff <- 0
Fp <- 0
for (i in 1:1000){
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if((truevalue[i]<Ffup) & truevalue[i]>Ffdown)
Ff <- Ff+1

if((truevalue[i]<Fpup) & truevalue[i]>Fpdown)
Fp <- Fp+1

}
Ffc <- Ff/1000
Fpc <- Fp/1000
list(Ffc=Ffc,Fpc=Fpc,Ffl=Ffl,Fpl=Fpl)

}
Ffc <- rep(NA,500)
Fpc <- rep(NA,500)
Ffl <- rep(NA,500)
Fpl <- rep(NA,500)
for (i in 1:500){

set.seed(5*i)
results <- TAR.sim(f,n)
Ffc[i] <- results$Ffc
Fpc[i] <- results$Fpc
Ffl[i] <- results$Ffl
Fpl[i] <- results$Fpl
if(i%%20==0) print(i)

}
print(mean(Ffc))
print(mean(Fpc))
print(mean(Ffl))
print(mean(Fpl))
print(sd(Ffl))
print(sd(Fpl))

(b) Bootstrap FI (BFI) has the lowest CVR for both distributions (a) and (b). In
the case of the N (0, 1) distribution, we see that the under-coverage of BFI with
fitted residuals is partially corrected by the use of predictive residuals. For
the Student t5 distribution the correction causes more coverage distortions than
the standard normal distribution. We also see this effect in the values of FI.
The increase in variability of the interval length is the price one has to pay for
using predictive residuals. This is a finite-sample effect since asymptotically the
omission of a finite number of observations, through the use of the leave-one-out
construction, does not make a real difference. In general, the BFI with fitted
residuals performs reasonably well. This finding confirms the observations made
in Example 10.6 of the main text.

10.11 (a) Figures 10.4(a) – (b) show the indicator (hit) function {i(α)
t } for SCMI and

HDR. Figure 10.4(c) shows p-values of the LRuc and LRcc test statistics as a
function of the coverage probability p with p ranging from 0.5 to 0.95. When p
is approximately less than 0.71, we see that the uc (unconditional coverage) and
the cc (conditional coverage) hypothesis both are rejected at the 5% nominal
significance level for the SCMI-based FI. The reverse seems to be true for the
HDR, rejecting the uc and cc hypotheses for coverage probabilities larger than
approximately 0.7. In addition, the independence hypothesis is not rejected
for SCMI with LRiid = 2.37 (p-value = 0.123). By contrast, the assumption of
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Figure 10.4: Indicator (hit) function for SCMI and HDR in panels (a) and (b), respect-
ively. Panel (c): empirical p-values of the LR test statistics for unconditional coverage (uc)
and conditional coverage (cc).

independence is rejected for HDR (p-value = 0.04) at the 5% nominal significance
level. Clearly, these test results reflect the fact that the SCMI-based FI is too
wide at certain forecast horizons H (see Figure 10.6 in the main text), while the
HDR-based FI is a bit too narrow.

(b) For SCMI the observed value of the test statistic TN,[N/2] with N = 30 is −2.015
(p-value = 0.998). Thus, we do not reject the independence (ind) hypothesis,
which is in line with the conclusion based on the LR ind test statistic in part (a).
For HDR the observed value of the test statistic TN,[N/2] with N = 19 is 1.214
(p-value = 0.439). So, also in this case we do not reject the null hypothesis.
Unfortunately, this result is not supported by the test result reported in part
(a). Thus, one may tentatively conclude that both SCMI and HDR produce
adequate independent FIs without clustering patterns.

The above test results can be obtained by means of the following R code.

###################################################################
# R code: Exercise 10.11(b)
# File: Hit-function.r
# Coded by: P. Araujo Santos
#
# Reference:
# Araujo Santos, P. (2010).
# Interval forecasts evaluation: R programs for a
# new independence test. Notas e Comunicacoes CEAUL 17/2010.
# Available at: http://www.ceaul.fc.ul.pt/notas.html?ano=2010.
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# Araujo Santos, P. and Fraga Alves, M.I. (2012).
# A new class of independence tests for interval forecasts
# evaluation.
# Computational Statistics & Data Analysis, 56(11), 3366-3380.
# DOI: 10.1016/j.csda.2010.10.002.
###################################################################
# Hit sequence
hit <- c(1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1) # SCMI
# hit <- c(0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,
# 0,1,1,1,1,1,1,1,1,0,1) # HDR
tt <- length(hit)
# Durations
no_hit_duration <- 0
j <- 1
zeros <- 0
for(i in 1:tt) {

if (hit[i]<1){
zeros <- zeros+1

}
else {
no_hit_duration[j] <- zeros+1
zeros <- 0
j <- j+1
}

}
no <- no_hit_duration
n <- length(no)

# T[0.5] Independence Test
no <- sort(no)
observed_T <-log(2)*(no[n]-1)/no[floor(0.5*n)]-log(n)
observed_T

# Simulation of the upper bound for the p-value
v <- 0
repl <- 250000 # Number of replications
v <- rep(0,times=repl)
for(i in 1:repl) {

if((i/10000-floor(i/10000))==0){print(repl-i)}
u <- runif(n)
y <- -log(1-u)
no_simul <- sort(y)
v[i] <- log(2)*(no_simul[n]/no_simul[floor(n/2)])-log(n)

}
simulated_upper_bound_p_value <- length(v[v>=observed_T])/repl
observed_T
simulated_upper_bound_p_value
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10.12 For the LS predictor we have Y LS
t+1|t = 0. The one-step ahead NL predictor is given

by

Y NL
t+1|t = ψYt−1ε̂t,

where ε̂t = 0, Yt = 0, for t < 1. The usual procedure is to compute {ε̂t}T
t=1 recursively

by using the relationship

ε̂t = Yt − ψYt−2ε̂t−1.

Since the model is completely known, the only relevance of the time series length
T = 50 is that the “estimated” errors need some time to converge. This seems to be
the case for T = 50, but may not be so for T much smaller than 50. Figures 10.5(a)
– (b) show the efficiency, as measured by the relative MSFE, for H = 1 and 2.

(a)+(b) We see from Figure 10.5(a) that the best linear predictor is less efficient that
the quadratic (Q) predictor (red solid line) for one-period ahead for sufficiently
small values of ψ (approximately |ψ| < 0.47). The disadvantage from using
a linear predictor obviously decreases as the parameter ψ gets nearer to the
boundary of the invertibility region since in that case the BL model will be more
difficult to estimate. The theoretical efficiency loss is maximized for ψ = −0.38
and ψ = 0.42. Also, we see that the one-step ahead nonlinear (NL) predictor
is far more efficient (blue solid line) than the quadratic predictor for all values
of ψ. Only for small values of |ψ| the quadratic predictor has a slightly smaller
one-step ahead MSFE than the nonlinear predictor.

In forecasting two-steps ahead (Figure 10.5(b)), the quadratic predictor (based
on one-step ahead forecasts) is solidly beaten by both the linear and nonlinear
predictors for all values of |ψ|. Note that the efficiency becomes disastrously low
for values of |ψ| near the boundary of the invertibility region.

Remarks:

• It can be shown (Terdik and Subba Rao, 1989, p. 284) that the MSE of the best
H-step ahead linear predictor is always greater than the innovation variance of
the process {Yt, t ∈ Z} satisfying the equation

Yt = φ0 +
p∑

i=1

φiYt−i + εt +
q∑

j=1

θjεt−j +
R∑

j=0

S∑

v=0

ψj,j+vYt−j−vεt−v,

where {εt}
i.i.d.
∼ N (0, σ2

ε).

• It is recommended to extend the MC simulation experiment to more elaborate
subdiagonal and diagonal BL models. For instance, one may compare the fore-
casting performance of the nonlinear predictor and the quadratic predictor in
case the DGP is given by

Yt = ψ1Yt−2εt−1 + ψ2Yt−4εt−2 + εt, {εt}
i.i.d.
∼ N (0, 1).

Also, other forecast accuracy measures may be employed. We anticipate that for
all BL models under study, the results will be disappointing for the quadratic
predictor.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 10.12
% File: MSFE.m
%
% Purpose: Using MC simulation, the computer code computes
% the MSFEs of three predictors for forecasts obtained
% from a subdiagonal BL model, with
% NLP = Nonlinear predictor;
% QP = Quadratic predictor; and
% LP = Linear (least squares) predictor.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nrep = 2000;
N = 100;

for b = 1:131
beta = -0.65+(b-1)*0.01;
index(b) = beta;
for it = 1:nrep

e = normrnd(0,1,154,1);
y(1) = 0;
y(2) = 0;

% Simulate time series
for i = 3:154

y(i) = beta*y(i-2)*e(i-1)+e(i); % BL process
end
w = y(103:154); % 52 data points, 100 observations for warming up
w0 = 0;
res(1) = w(1);
res(2) = w(2)-beta*w0*res(1);
res(3) = w(3)-beta*w(1)*res(2);
for u = 4:52

res(u) = w(u)-beta*w(u-2)*res(u-1);
end

wLtrue1(it) = w(51); % actual values
wLtrue2(it) = w(52);

NLP1(it) = beta*w(49)*res(50); % 1-step ahead NL
QP1(it) = beta*w(49)*w(50); % 1-step ahead QP
resNLP(51) = w(51)-NLP1(it);

sum1 = 0;
sum2 = 0;
sum3 = 0;
for u = 1:N

ee = datasample(e,1);
sum1 = sum1 + beta*w(50)*resNLP(51)+ee; % 2-step ahead NL:

% 52 conditional on res(51) and w(50)
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sum2 = sum2 + beta*w(50)*QP1(it)+ee; % 2-step ahead QP:
% 52 conditional on QP(51) and w(50)

sum3 = sum3 + ee;
end
NLP2(it) = sum1/N;
QP2(it) = sum2/N;
LP2(it) = sum3/N;

end % it=1:nrep

mseNLP1 = 0;
mseNLP2 = 0;
mseQP1 = 0;
mseQP2 = 0;
mseLP1 = 0;
mseLP2 = 0;

for it=1:nrep
mseNLP1 = mseNLP1+(wLtrue1(it)-NLP1(it))^2;
mseNLP2 = mseNLP2+(wLtrue2(it)-NLP2(it))^2;

mseQP1 = mseQP1+(wLtrue1(it)-QP1(it))^2;
mseQP2 = mseQP2+(wLtrue2(it)-QP2(it))^2;

mseLP1 = mseLP1+wLtrue1(it)^2; % 1-step ahead LS
% forecasts are zero

mseLP2 = mseLP2+(wLtrue2(it)-LP2(it))^2;
end

RMSE1(b) = mseNLP1/mseQP1; % Nonlinear vs. QP
RMSE2(b) = mseNLP2/mseQP2;

RMSLP1(b) = mseLP1/mseQP1; % Linear vs. QP
RMSLP2(b) = mseLP2/mseQP2;

end % end beta loop

% Relative Mean Square Errors
RMSE_NLP_QP1 = [RMSE1;index]';
RMSE_NLP_QP2 = [RMSE2;index]';

RMSE_LP_QP1 = [RMSLP1;index]';
RMSE_LP_QP2 = [RMSLP2;index]';
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Figure 10.5: One- and two-step ahead relative MSFEs for the BL model Yt = ψYt−2εt−1+

εt with {εt}
i.i.d.
∼ N (0, 1).

Chapter 11

11.1 Below we will make use of the properties (rules) for matrix norms given in Appendix
3.A of the main text for p = 2, and write ‖ ∙ ‖ = ‖ ∙ ‖2. From (11.14) the vector of
innovations is given by

ε̂t =Yt−
p∑

i=1

ΦiYt−i −
{
Θv +

p∑

u=1

Ψuv[Yt−u ⊗ Im]
}
ε̂t−v, (v ∈ {1, . . . , q}; q ≤ p),

so that the vector of reconstruction errors can be expressed as

et = εt − ε̂t = −
{
Θv +

p∑

u=1

Ψuv[Yt−u ⊗ Im]
}
εt−v, (v ∈ {1, . . . , q}; q ≤ p).

Given a vector of initial values ε0, we get after s recursions

εt = (−1)s
s∏

j=1

{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im]
}
ε0.

Taking the norm, we get

‖et‖ ≤
s∏

j=1

‖
{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im

}
‖ ‖ε0‖, by rule (A.9).

Similarly, for the second moment of the process {et, t ∈ Z} we get

‖et‖
2 ≤

{ s∏

j=1

‖
{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im]
}
‖ ‖e0‖

}2

≤
{ s∏

j=1

‖
{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im

}
‖
}2

‖e0‖
2,
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where we used rule (A.10) in Appendix 3.A, and the following two properties: (i)
‖A′‖ = ‖A‖, since A and A′ have the same set of eigenvalues, and (ii) ‖xx′‖ = ‖x‖2,
since xx′ has rank 1 and xx′ ∙ x = x ∙ x′x = x‖x‖2; thus the only non-zero eigenvalue
of xx′ equals ‖x‖2.
Now, we need to show that ‖et‖ converges to zero in probability. Let

Ps,t =
s∏

j=1

‖
{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im]
}
‖, and

Lj,t = log‖
{
Θv +

p∑

u=1

Ψuv[Yt−u−(j−1)v ⊗ Im]
}
‖.

Recall the following ergodic theorem (cf. Hannan, 1970; Hannan and Deistler, 2012,
p. 203) for a general strictly stationary process.

(i) If {Yt, t ∈ Z} has finite first moments (i.e. E{|Yj,t|} < ∞), then

lim
T→∞

T−1
T∑

t=1

Yt = E(Yt), a.s.

(ii) If {Yt, t ∈ Z} has finite second moments (i.e. E(Y 2
j,t) < ∞), then (for s ≥ 0)

lim
T→∞

T−1
T∑

t=1

Yt+sY
′
t = E(YtY

′
s), a.s.

For proofs see, e.g., Rosanov (1967).
The above results extend to the following case. If {Yt, t ∈ Z} is ergodic and for any
real-valued vector function f(y) with E{|f(Yj,t)|} < ∞, then with probability one,

lim
T→∞

T−1
T∑

t=1

f(Yt) = E{f(Yt)}.

Now, by the ergodic theorem, we get

lim
s→∞

s−1 log Ps,t = lim
s→∞

s−1
s∑

j=1

Ls,t = E
{

log‖Θv +
p∑

u=1

Ψuv[Yt−u ⊗ Im]‖
}

< 0,

which implies lims→∞ Ps,t = 0 a.s. This follows from log
(
Ps,t

)s−1

→ α < 0. So
(
Ps,t

)s−1

→ exp(α) < 1. Choose any ε > 0. If Ps,t > ε, then log
(
Ps,t

)s−1

→ 1.
Hence, Ps,t < ε for s large enough.
The above result means that limt→∞‖et‖= 0, and by the Lebesgue dominated conver-
gence theorem (cf. Rao (1973, p. 136)) we have limt→∞ E‖et‖ = E{limt→∞‖et‖} = 0.
Next, using a similar argument gives limt→∞ E‖et‖2 = E{limt→∞‖et‖2} = 0. Thus,
the vector of reconstruction errors et satisfies the invertibility condition; cf. condition
(3.31) in the univariate case.
By using Jensen’s inequality, we obtain

expE
{

log‖Θv +
p∑

u=1

Ψuv[Yt−u ⊗ Im]‖
}
≤ E{‖Θv +

p∑

u=1

Ψuv[Yt−u ⊗ Im]‖
}

< 1.
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Clearly, this last condition is similar to condition (11.13) in the main text for the
general multivariate BL model. In fact, this result also follows from similar arguments
used by Granger and Andersen (1978a,b), i.e., the geometric mean of a set of positive
numbers is less than or equal to the arithmetic mean.

Next, we consider a more useful condition for invertibility. In particular, using Jensen’s
inequality, the Cauchy–Schwarz inequality, rule (A.12) in Appendix 3.A, the property
‖x ⊗ Im‖ = ‖x‖, and the strict stationarity of {Yt, t ∈ Z}, we have

log expE
{

log‖Θv +
p∑

u=1

Ψuv[Yt−u ⊗ Im]‖
}
≤ logE‖Θv +

p∑

u=1

Ψuv[Yt−u ⊗ Im]‖

≤ log
{
‖Θv‖ +

p∑

u=1

‖Ψuv‖E‖Yt‖
}

≤ log
{
‖Θv‖ +

p∑

u

‖Ψ‖
√
E‖Yt‖2

}
.

Hence, the result in (11.16) follows.

Remark: In Exercise 6.2 we showed that it is difficult to distinguish a diagonal
BL(0, 0, 1, 1) process from an MA(1) process using the ACF. Similarly, when two
variables are generated by a bivariate diagonal BL process and examined with the
ACF and CCF, there will be no indication that the DGP is nonlinear. For instance,
suppose the processes {Xt, t ∈ Z} and {Yt, t ∈ Z} are generated by

(
Yt

Xt

)

=

(
ε1,t

ε2,t

)

+

(
0 τ1ε1,t−1

τ2ε2,t−1 0

)(
Yt−1

Xt−1

)

, (∗)

where {εi,t}
i.i.d.
∼ (0, σ2

i,ε) (i = 1, 2), and ε1,t is independent of ε2,t. For this model we
have

Yt = ε1,t + τ1ε1,t−1ε2,t−1 + τ1τ2ε1,t−1ε2,t−2Yt−2,

so E(Yt) = 0. Next,

σ2
Y =

σ2
1,ε + τ2

1 σ2
1,εσ

2
2,ε

1 − τ2
1 τ2

2 σ2
1,εσ

2
2,ε

=
σ2

1,ε(1 + λ2
1)

1 − λ2
,

where λ = λ1λ2, λ1 = τ1σ2,ε, and λ2 = τ2σ1,ε. Thus, for the processes {Xt, t ∈ Z}
and {Yt, t ∈ Z} to be non-explosive we need the condition λ2 < 1.

First we consider the invertibility condition. Let e1,t = ε1,t − ε̂1,t denote the recon-
struction errors, where ε̂1,t is generated from arbitrary values, ε̂1,0 and ε̂2,0, and a
sample of Xt and Yt, t ≥ 0, using (∗). Subtracting Yt = ε̂1,t + τ1ε̂1,t−1Xt−1 from the
first equation in (∗) yields e1,t = −τ1Xt−1e1,t−1. As this is like (8.34) in Granger and
Andersen (1978a), we can use their result (8.42) that τ2

1E(X2
t ) < 1 for invertibility.

This gives the invertibility condition
(
λ2(1 + λ2

1)/(1 − λ)
)

< 1 for {Xt, t ∈ Z}, and
likewise

(
λ2

1(1 + λ2
2)/(1 − λ2)

)
< 1 for {Yt, t ∈ Z}.

It is easy to see that the autocovariances of the two processes are zero, i.e., γX(`) = 0
∀` > 0, and γY (`) = 0 ∀` > 0. The cross-covariances of the two processes are zero
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except at zero lag. Then,

E(XtYt) = τ1τ2E(ε1,tε2,tXtYt)

= τ1τ2

(
E(ε2

1,tε
2
2,t) + τ1E(ε1,tε

2
2,tε1,t−1Xt−1)

+ E(ε2
1,tε2,tε2,t−1Yt−1) + τ1τ2E(ε1,tε2,t + ε2,t−1Yt−1ε1,t−1Xt−1)

)

= τ1τ2(σ
2
1,εσ

2
2,ε + 0 + 0 + 0) = τ1τ2σ

2
1,εσ

2
2,ε.

If we define ρX,Y (`) = E
(
(Xt −X)(Yt−` −Y )

)
/σXσY , then the CCF of (∗) is given by

ρX,Y (`) =






τ1τ2σ1,εσ2,ε(1 − λ2)
√

(1 + λ2
1)(1 + λ2

2)
, ` = 0,

0, ` 6= 0.

So, by examining the ACF and CCF of {Xt, t ∈ Z} and {Yt, t ∈ Z} we might assume
incorrectly that these processes were WN with instantaneous causality.

It is easily seen that using the correct model (∗), gives forecasting advantage over a
WN model. However, the advantage extends only to one-step ahead forecasts, the
two and longer step forecasts being identical. To see this, for model (∗) the H-step
ahead forecast at time t is given by

E(Yt+H|t) =

{
τ1ε1,tXt, H = 1,

0, H > 1.

Define e1,t+H|t = Yt+H −E(Yt+H|t), the H-step ahead forecast error. Then e1,t+1|t =
ε1,t+1 and e1,t+H|t = Yt+H if H > 1. For the WN model, the H-step ahead forecast
error is given by e′1,t+1|t = Yt+1 and e′1,t+H|t = e′1,t+1|t if H > 1. The loss from using
the WN model for one-step ahead forecasts can be defined as

loss =
E
(
(e′t+1|t)

2
)

E
(
(et+1|t)2

) =
σ2

Y

σ2
1,ε

=
1 + λ2

1

1 − λ2
1λ

2
2

.

Since for invertibility we must have τ2
1 σ2

X < 1 and τ2
2 σ2

Y < 1, then

1 ≤ loss <
1

σ2
1,ετ

2
2

<
1
λ2

2

for {Yt, t ∈ Z}.

The third moments and the cross third moments can be used to show that the two
processes are not instantaneously related WN. Another set of statistics that will dis-
tinguish the two processes from WN with instantaneous causality are the ACF and
CCF of {X2

t , t ∈ Z} and {Y 2
t , t ∈ Z}. Explicit expressions for these functions can be

obtained routinely.

11.2 (a) Let U ∼ N 1(0, σ11) and V ∼ Nm−1(0,Σ22). Then it is well known from the
theory of multivariate statistical analysis (see, e.g., Johnson and Wichern, 2002)
that the conditional distribution of V given that U = u, is normal and has

Mean = Σ12σ
−1
11 u and Covariance = Σ22 − Σ12σ

−1
11 Σ′

12.

Denote the corresponding conditional density function by gm−1(∙|u).
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(i) Since fm(v) = gm−1(v|u)f1(u) with v = (v1, . . . , vm)′, we have
∫

Ai

x1fm(x)dx =
∫

Ai

uf1(u)gm−1(v|u)dudv

=
∫

R(i)

uf1(u)
(∫

Rm−1

gm−1(v|u)dv
)
du=μi =σ11

μ1

σ11
.

In a similar way, for i > 1,
∫

Ai

xjfm(x)dx=
∫

R(i)

f1(u)
(∫

Rm−1

vjgm−1(v|u)dv
)
du

=
∫

R(i)

f1(u)
σj1

σ11
udu =

σj1

σ11
μi.

(ii) Clearly, for k = j = 1 the term on the right-hand side becomes σi−σ11αi +
σ11αi = σi. So similar to part (i), we have

∫

Ai

x2
1fm(x)dx=

∫

Ai

u2f1(u)gm−1(v|u)dudv

=
∫

R(i)

u2f1(u)
(∫

Rm−1

gm−1(v|u)dv
)
du= σi.

For k = 1, j 6= 1, the term on the right-hand side becomes
(
σj1/σ11

)
σi.

Again, this result follows in a similar way as above, i.e.
∫

Ai

x1xjfm(x)dx =
∫

Ai

uf1(u)vjgm−1(v|u)dudv

=
∫

R(i)

uf1(u)
(∫

Rm−1

vjgm−1(v|u)dv
)
du=

∫

R(i)

u
σj1

σ11
udu=

σj1

σ11
σi.

For k 6= 1, j 6= 1, we have
∫

Ai

xkxjfm(x)dx =
∫

Ai

f1(u)
(∫

Rm−1

vkvjgm−1(v|u)dv
)
du

=
∫

R(i)

f1(u)
{∫

Rm−1

(
(vk −

σk1

σ11
u)(vj −

σj1

σ11
u)

+
σk1

σ11
uvj +

σj1

σ11
uvk − u2 σk1σj1

σ2
11

)
gm−1(v|u)dv

}
du

=
∫

R(i)

f1(u)
(
σkj −

σk1σj1

σ11
+

σk1

σ11
u

σj1

σ11
u +

σj1

σ11
u

σk1

σ11
u − u2 σk1σj1

σ2
11

)
du

=
(
σkj −

σk1σj1

σ11

)
αi +

σk1σj1

σ2
11

σi =
σk1σj1

σ11

( σi

σ11
− αi

)
+ σkjαi.

(b) (i) Using result (i) in part (a), we have
∫

Ai

r′xfm(x)dx =
∫

Ai

m∑

j=1

rjxjfm(x)dx

=
m∑

j=1

rj

∫

Ai

xjfm(x)dx =
μi

σ11
r′Σ∗

12,

with Σ∗
12 = (σ11,Σ12)′.
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(ii) Using result (ii) in part (a), we have

∫

Ai

r′xx′sfm(x)dx =
∫

Ai

( m∑

j=1

rjxj

)( m∑

k=1

skxk

)
fm(x)dx

=
m∑

j=1

m∑

k=1

rjsk(σkjσj1γi + σk1αi)

= γir
′Σ∗

12Σ
∗′

12s + αir
′ΣXs.

(c) To obtain the required moments, we introduce an m × m orthogonal matrix Q
with first column given by the m-dimensional vector 1. Applying the nonsingular
linear transformation Q′x to x with Jacobian |Q| 6= 0, we have

Q′x ∈ Ai ⇐⇒ x ∈ Mi, (i = 1, 2).

Let ψ(x) be the density function of Nm(0,ΣX), and ϕ(x) the density func-
tion of Nm(0,Q′ΣXQ). Then, given the above result, there exists a bounded
continuous function g(∙) such that
∫

Mi

g(x)ψ(x)dx=
∫

ξ(Mi)

g
(
ξ−1(x)

)
ψ
(
ξ−1(x)

)
dx=

∫

Ai

g(Qz)ϕ(z)dz, (i=1, 2),

with ξ : X → Q′X. Hence, the first moment of {Yt, t ∈ Z} is given by

E(Yt) = E(Xt) +
2∑

i=1

∫

Mi

Bixψ(x)dx =
2∑

i=1

∫

Ai

BiQzϕ(z)dz.

Note, the covariance matrix Q′ΣXQ has as first column Q′ΣX1. Then, using
result (i) in part (b), we have

E(Yt) =
2∑

i=1

μi

1′ΣX1
BiQQ′ΣX1 =

1
1′ΣX1

2∑

i=1

μiBiΣX1

=
1

1′ΣX1
μ2(B2 − B1)ΣX1 = (2π1′ΣX1)−1/2BΣX1,

since −μ1 = μ2 = (1′ΣX1/2π)1/2.

The variance of {Yt, t ∈ Z} is given by

Var(Yt) = E(XtX
′
t) − E(Yt)(E(Yt))

′.

Using result (ii) of part (b), the first term on the right-hand side can be written
as

E(XtX
′
t) = ΣX +

2∑

i=1

∫

Mi

Bixx′B′
iψ(x)dx = ΣX +

2∑

i=1

∫

Ai

BiQzz′Q′B′
iϕ(z)dz

= ΣX +
2∑

i=1

γiBiΣX11′Σ′
XB′

i +
2∑

i=1

αiBiΣXB′
i

= ΣX +
1
2

(
B1ΣXB′

1 + B1ΣXB′
1

)
,



166 Solutions

since α1 = α2 = 1/2, and

γi =
σi

σ2
11

−
αi

σ11
=

1′ΣX1
2

1
(1′ΣX1)2

−
1/2

1′ΣX1
= 0, (i = 1, 2).

It is easy to see that the covariance matrix at lag 1 is given by

Cov(Yt,Yt−1) = E
( 2∑

i=1

BiI(Xt−1 ∈ Mi)Xt−1X
′
t−1

)

− E
( 2∑

i=1

BiI(Xt−1 ∈ Mi)Xt−1

)(
E(Xt−1)

)′

=
2∑

i=1

∫

Mi

Bixx′ψ(x)dx =
2∑

i=1

∫

Ai

BiQzz′Q′ϕ(z)dz

=
( 2∑

i=1

γiBi

)
ΣX11′ΣX +

( 2∑

i=1

αiBi

)
ΣX

=
1
2
(B1 + B2)ΣX .

Clearly, when ΣX = σ2
εIm, the above expressions reduce to, respectively,

E(Yt) =
σε√
2π

B1, Var(Yt) = σ2
ε

(
Im +

1
2
(B1B

′
1 + B2B

′
2) −

1
2π

B11′B′
)
,

Cov(Yt,Yt−1) =
σ2

ε

2
(B1 + B2).

Moreover, in the case m = 1 (a univariate asMA(1) process) and σ2
ε = 1, the

expressions for E(Yt) and Var(Yt) reduce to the mean and variance given in
Exercise 2.4(a) of the main text.

11.3 (a) Assume some standard regularity conditions are satisfied. Then, under H0 :
Θ1 = 0 in (11.69), the LM-type test statistic follows from the score matrix

∂ log LT (θ̂)
∂Θ1

=
T∑

t=1

{
ZtXt

(
Yt − Θ̂′

0Zt

)′
Σ̂−1

ε

}
= U′

(
Y − XB̂1

)
Σ̂−1

ε ,

where θ̂, Θ̂0 = B̂1 (an (mp + 1) × m matrix) and Σ̂ε (an m × m matrix) are
parameter estimates under the null hypothesis H0 : Θ1 = 0. This expression can
be rewritten as

Q ≡ U′(Y − X(X′X)−1X′Y)Σ̂−1
ε

= U′(IT − PX)(XB1 + E)Σ̂−1
ε

= U′(IT − PX)EΣ̂−1
ε ,

where E = (ε1, . . . , εT )′ is a T × m matrix.

(b) Under the null hypothesis, Σ̂ε converges to Σε in probability. Further, because

vec(E′)
i.i.d.
∼ N (0, IT ⊗ Σε), it follows that the random matrix Q converges in

probability to a matrix normal distribution with mean zero and variance U′(IT −

PX)U ⊗ Σ−1
ε conditional on X and U. Let S ≡

(
U′(IT − PX)U

)−1/2
QΣ̂1/2

ε .
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Then, according to the above result, S will asymptotically converge to a matrix
normal distribution with mean zero and variance IT ⊗ IT . So, we conclude that
the chi-square version of the LM-type test statistic is given by

LM(1)
T,p(m) = tr{S′S}

= tr{Σ̂1/2
ε Q′

[(
U′(IT − PX)U

)−1/2]′(
U′(IT − PX)

)−1/2
QΣ̂1/2

ε }

= tr{Σ̂−1
ε (Y − XB̂1)

′U
[
U′(IT − PX)U

]−1
U′(Y − XB̂1)},

which under the null hypothesis, and as T → ∞, converges in probability to a
χ2 distribution with m(mp + 1) degrees of freedom.

11.4 (a) Because of independence, the joint distribution function FU(p)(u1, u2) = u1u2

and FU(p)(u1, u2) = FU1(u1)FU2(u2) = 1. Let Y1 = U1U2, Y2 = U2. Since
y1 = u1u2 and y2 = u2, we have u1 = y1/y2 and u2 = y2. The determinant of
the Jacobian for the inverse transformation is

J = det
(∂(u1, u2)

∂(y1, y2)

)
=

∣
∣
∣
∣

1
y2

− y1

y2
2

0 1

∣
∣
∣
∣ =

1
y2

.

Accordingly, the joint density function of (Y1, Y2)′ is given by

fY1Y2 = f
(y1

y2
, y2

)
×

1
y2

=
1
y2

, 0 < y1 < y2 < 1.

Since Y1 is the random variable of interest, integrating Y2 out of fY1Y2 over the
permissible range gives

fY1(y1) =
∫ 1

y1

y−1
2 dy2 = [log y2]

1
y1

= − log y1.

Hence, the distribution function is given by FY1(y1) = y1−y1 log(y1) if 0 < y1 <
1.

(b) Let Y1 = U1/U2, Y2 = U2. Since y1 = u1/u2 and y2 = u2, we have u1 = y1y2

and u2 = y2. It is easy to see that in this case the determinant of the Jacobian
for the inverse transformation is given by J = y2. The joint density function of
(Y1, Y2)′ is then

fY1Y2 = f
(y1

y2
, y2

)
× y2 = y2, 0 < y1 < ∞, 0 < y2 < 1.

Since Y1 is the random variable of interest, integrating Y2 out of fY1,Y2 over the
permissible range gives

fY1(y1) =

{ ∫ 1

y1
y2dy2 = 1

2 , when y1 < 1,
∫ 1/y1

0
y2dy2 = 1

2y2
1
, when y1 > 1.

From this result, we immediately obtain the distribution function given in Ex-
ercise 11.4(b).

(c) Let Y1 = (U1 − 1
2 )(U2 − 1

2 ), Y2 = (U2 − 1
2 ). Since y1 = (u1 − 1

2 )(u2 − 1
2 ) and

y2 = (u2 − 1
2 ), we have u1 − 1

2 = y1/y2 and u2 − 1
2 = y2. The determinant of the

Jacobian for the inverse transformation is identical to the one given in part (a)
above, i.e. J = 1/y2. The joint density of (Y1, Y2) is then

fY1Y2 = f
(y1

y2
+

1
2
, y2 +

1
2

)
×
∣
∣
∣

1
y2

∣
∣
∣ =

∣
∣
∣

1
y2

∣
∣
∣, −

1
2

< y1 < y2 <
1
2
.
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Figure 11.1: Intraday transaction data set: Minute returns of S&P 500 index futures
and cash prices and the associated threshold variable in May 1993: (a) first differences of
log(future) (Y1,t), (b) first differences of log(price) (Y2,t), and (c) {Xt = 100X∗

t }; T =7,060.

Integrating Y2 out of fY1Y2 over the permissible range gives the density of Y1,
i.e.

fY1(y1) =






∫ 1/2

2y1

1
y2

dy2 y1 > 1/2, y2 > 1/2,
∫ 2y1

−1/2
− 1

y2
dy2 y1 > 1/2, y2 < 1/2,

∫ 1/2

−2y1

1
y2

dy2 y1 < 1/2, y2 > 1/2,
∫ −2y1

−1/2
− 1

y2
dy2 y1 < 1/2, y2 < 1/2,

=

{
log( 1

2 ) − log(2y1), y1 > 0,
log( 1

2 ) − log(−2y1), y1 < 0.

From which we obtain the distribution function as given by Exercise 11.4(c).

11.5 (a) Figure 11.1 shows time series plots of the data. Here, Y1,t = ft,` − ft−1,` and
Y2,t = st − st−`, where ft,` is the log of the index future price at time t and
maturity `, and st is the log of the security index price at time t. The variable
X∗

t is assumed to be weakly stationary and have a continuous distribution. Its
values follow from a version of the so-called cost-of-carry model (see, e.g., Tsay,
2010) which is given by

ft,` − st = (rt,` − qt,`)(` − t) + X∗
t ,

where rt,` is the risk-free premium, qt,` is the dividend yield with respect to the
cash price at time t, and (` − t) is the time to maturity of the futures contract.

The Tukey nonadditivity-type test statistic F
(T)

T,p (m), and the F
(O)

T,p (m) test stat-
istic both have zero p-values. Moreover, the p-values for the univariate version of
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the F
(O)
T,p (m) test statistic (Algorithm 5.10) all indicate that the null hypothesis

of linearity should be rejected. Also, the test statistic CT,p(d,m) with d = 1 has
a zero p value. Hence, this test indicates threshold nonlinearity.

Table 11.1: CLS estimates of the bivariate VTAR model (11.99) for the intraday trans-
action data set; T = 7,060. Blue-typed numbers denote significant parameter values at the
5% nominal level.

Lower regime (i = 1) Upper regime (i = 2)

Y1,t Y2,t Y1,t Y2,t

φ
(i)
0 0.000 0.000 0.000 -0.000

Y1,t−1 -0.061 0.083 -0.038 0.037
Y1,t−2 0.000 0.148 0.095 0.111
Y1,t−3 0.017 0.121 0.036 0.097
Y1,t−4 0.005 0.082 -0.006 0.079
Y1,t−5 0.003 0.082 0.001 0.048
Y1,t−6 -0.016 0.056 -0.003 0.035
Y1,t−7 0.010 0.048 -0.000 0.035
Y1,t−8 0.002 0.021 -0.018 0.006
Y2,t−1 -0.047 -0.011 -0.022 0.057
Y2,t−2 -0.055 -0.083 -0.015 -0.015
Y2,t−3 0.064 -0.021 -0.023 -0.007
Y2,t−4 0.043 0.021 0.018 0.007
Y2,t−5 0.079 0.028 -0.015 0.003
Y2,t−6 0.014 0.047 0.058 0.003
Y2,t−7 -0.037 0.016 -0.056 0.031
Y2,t−8 -0.022 0.034 0.020 0.008
Xt−1 0.000 0.000 0.000 0.001

(b) Using a grid search method with 300 points, AIC finds a threshold value r̂ =
−0.024. The corresponding number of data points in the two regimes are 3,519
and 3,532, respectively. Table 11.1 contains details of the CLS parameter es-
timates. It is apparent that spot rates changes (Y2,t) are more time dependent
than futures prices changes (Y1,t) with significant coefficients of Xt−1 for Y2,t

in both regimes at the 5% nominal level, but not for Y1,t. We also see that
Y1,t depends negatively on Y1,t−1. This is in agreement with the so-called bid-
ask spread bounce, i.e., a negative first-order serial correlation in the series of
observed price changes and no serial correlation beyond lag 1. Finally, in lead-
lag terms, Y1,t leads Y2,t in a stronger fashion than vice versa. This indicates
that there is more market-wide information in the futures market than the cash
market.

(c) The values (p-values) of the LM(1)
T,p(2) and F

(1)
T,p(2) test statistics are respectively

111.80 (0.089× 10−9) and 3.478 (0.121× 10−9). Thus, in both cases linearity is
rejected in favor of LVSTAR nonlinearity. This further supports the results in
part (a) that the series {Y1,t} and {Y2,t} are generated by a nonlinear DGP. In
addition, we computed the LVSTAR-version of Wilks’ lambda test statistic and
Rao’s modified F test statistic. The values (p-values) are respectively 111.845
(0.088 × 10−9) and 3.505 (0.088 × 10−9). All these test results were obtained
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with the MATLAB function scoretest.m (available at the website of this book),
which has been coded after the following R function.

SCORETEST <- function(mE, mX, mZ, flag)
##################################################################
# R code: Exercise 11.5(c)
# File: scoretest.r
# Coded by: Yukai Yang
#
# LM-type linearity test statistic versus LVSTAR nonlinearity
# INPUT: mE (matrix of residuals from VAR(p)-fit)
# mX (matrix of regressors)
# mZ (auxiliary regression matrix)
# OUTPUT: LM test statistic, first-order approximation
# F test statistic (rescaled LM-type test statistic)
# correcting a mistake in the degrees of freedom iDF2
# Wilks' test statistic
# Rao's F test statistic
#
# Reference:
# Yang, Y. (2012). Modelling Nonlinear Vector Economic Time Series,
# PhD thesis, Aarhus University, Denmark. Available at:
# http://pure.au.dk/portal/files/45638557/Yukai_Yang_PhD_Thesis.pdf.
###################################################################
{

iT = dim(mE)[1]
ip = dim(mE)[2]
ix = dim(mX)[2]
iz = dim(mZ)[2]
mE = data.matrix(mE)
mX = data.matrix(mX)
mZ = data.matrix(mZ)

iK = ix + iz
iDF = iz * ip
RSS0 = t(mE)%*%mE

# RSS0
mXX = cbind(mX, mZ)
mU = svd(mXX)$u
mR = mE - mU%*%t(mU)%*%mE
RSS1 = t(mR)%*%mR

# RSS1
R0 = svd(RSS0)$d
R1 = svd(RSS1)$d
LM = list()
FT = list()
WK = list()
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RA = list()

if((flag%%2)==1){
# LM test statistic

dTR = sum(diag(solve(RSS0)%*%RSS1))
test = iT * (ip-dTR)
LM$pval = 1 - pchisq(test,df=iDF)
LM$test = test
LM$df = iDF

# Rescaled test statistic
iDF1 = iDF
iDF2 = ip * iT - iK # Correcting a mistake: ip*(iT-iK)
test = LM$test * (iT - iK)/(iT * LM$df)
FT$pval = 1 -pf(test,df1=iDF1,df2=iDF2)
FT$test = test
FT$df1 = iDF1
FT$df2 = iDF2

}
flag = flag%/%2

if((flag%%2)==1){
# Wilks' test statistic

Lambda = sum(log(R1)) - sum(log(R0))
Lambda = Lambda * ((ip + iz + 1)*.5 + ix - iT)
WK$pval = 1 - pchisq(Lambda,df=iDF)
WK$test = Lambda
WK$df = iDF

}
flag = flag%/%2

if((flag%%2)==1){
# Rao's test statistic

iN = iT - ix - (ip+iz+1)*.5
is = sqrt( (iz*iz*ip*ip-4)/(ip*ip+iz*iz-5))
iDF1 = iDF
iDF2 = iN*is - iz*ip*.5 + 1
RAO = exp((sum(log(R0))-sum(log(R1)))/is)-1
RAO = RAO *iDF2 /iDF1
RA$pval = 1 - pf(RAO,df1=iDF1,df2=iDF2)
RA$test = RAO
RA$df1 = iDF1
RA$df2 = iDF2

}
return(list(LM = LM, FT = FT, WK = WK, RA = RA))
}

11.6 Figure 11.2 shows a plot of the raw data. Note that there are several peaks and
troughs in the series representing a number of financial crises. A well-known credit
crisis occurred during the 1980s and was a major factor that led to the 1990 – 1991
U.S. recession. Another well-known crisis was the crash of the dot-com bubble in the
time period 2000 – 2001. Also, prominent fluctuations in the series occur in late 2008
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Figure 11.2: Monthly U.S. personal disposable expenditures (blue solid line) and dis-
posable income (red solid line) in millions of dollars for the time period January 1985 –
December 2011 (T = 324).

and early 2009 with the U.S. subprime mortgage crisis that coincided with the U.S.
recession of December 2007 – June 2009. Both series have a steady upward stochastic
trend, so it is reasonable to make them stationary by differencing the data. For the
VAR(p) model order, AIC chooses p = 4 and BIC indicates that p = 3. This latter
choice is confirmed by the model selection criteria FPE and HQ (Hannan and Quinn,
1979). Hence, we set p = 3 throughout the analysis.

Below are three R functions, written by Dao Li, to obtain the LSTAR–CNF model
forecasts.

#######################################################################
# R code: Exercise 11.6 (LSTAR-CNF model forecasts)
# File: LSTAR-CNF-forecast.r
# Coded by: Dao Li
#
# Reference:
# Li, D. and He, C. (2013).
# Forecasting with vector nonlinear time series models.
# Working papers 2013:8, Dalarna University, Sweden.
# Available at:
# http://www.diva-portal.org/smash/get/diva2:606647/FULLTEXT02.pdf.
#######################################################################
library("MASS")
rm(list=ls())
myestimation <- function(data,p=3,dn=1,d=7,rank=1){
# Notes: p = 3 (order of LSTAR model);
# d = 7 (delay of transition variable)

n <- length(data[,1])
T <- length(data[1,])
y <- data
tempx <- matrix(0,(n*p),(T-max(p,d)))
for(i in 1:p){
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tempx[(1+n*(i-1)):(n+n*(i-1)),] <- y[,(max(p,d)-i+1):(T-i)]
}
tempy <- y[,(max(p,d)+1):T]
x <- rbind(rep(1,(T-max(p,d))),tempx)
st <- y[dn,max(p+1-d,1):(T-d)]
st1 <- round(quantile(st,0.05),2)
st2 <- round(quantile(st,0.95),2)

# Grid search of (gamma,c)
r <- seq(30,60.4,0.01)
c <- seq(0.69,0.75,0.01)
len1 <- length(r)
len2 <- length(c)
estl <- matrix(0,len1,len2)
for(k in 1:len1){ # search for gamma

for(j in 1:len2){ # search for c
###############################
# Estimation given one (gamma,c)
z <- matrix(0,(n*p+1),(T-max(p,d)))
for(i in 1:(n*p+1)){

z[i,] <- x[i,]/(1+exp(-r[k]*(st-c[j])/sd(st)))
}

X <- rbind(x,z)
resv <- tempy - tempy%*%t(X)%*%solve(X%*%t(X))%*%X
Sigv <- resv%*%t(resv)/T
Sigyz <- tempy%*%t(z)/T
Sigyx <- tempy%*%t(x)/T
Sigxx <- x%*%t(x)/T
Sigxz <- x%*%t(z)/T
Sigzz <- z%*%t(z)/T
Sigyzx <- Sigyz - Sigyx%*%solve(Sigxx)%*%Sigxz
Sigzzx <- Sigzz - t(Sigxz)%*%solve(Sigxx)%*%Sigxz

tempres <- eigen(x=Sigv,symmetric=TRUE,only.values=FALSE)
Sigv2 <- tempres$vector%*%diag(sqrt(tempres$values))%*%t(tempres$vector)
matrix_eigen <- solve(Sigv2)%*%Sigyzx%*%solve(Sigzzx)%*%t(Sigyzx)%*%solve(Sigv2)
result_eigen <- eigen(x=matrix_eigen,symmetric=TRUE,only.values=FALSE)

eigen_value <- result_eigen$values
eigen_vec <- result_eigen$vectors
eigenvec <- matrix(0,n,rank)
for(ind in 1:rank){

eigenvec[,ind] <- eigen_vec[,ind] # each clmn is an eigenvector
eigenvec[,ind] <- eigenvec[,ind]/sqrt(sum(eigenvec[,ind]^2))

}
A <- Sigv2%*%eigenvec # n times rank matrix
B <- t(eigenvec)%*%solve(Sigv2)%*%Sigyzx%*%solve(Sigzzx)
Gamma <- A%*%B
Phi <- (Sigyx - A%*%B%*%t(Sigxz))%*%solve(Sigxx)

reduced_v <- tempy - Phi%*%x - Gamma%*%z
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normA <- solve(Sigv2)%*%reduced_v%*%t(reduced_v)%*%solve(Sigv2)/T
estl[k,j] <- sum(diag(normA))
} # end search for c

} # end search for gamma
inrowcol <- which(estl==min(estl),arr.ind=TRUE)
estr <- r[inrowcol[1,1]]
estc <- c[inrowcol[1,2]]
z <- matrix(0,(n*p+1),(T-max(p,d)))
for(i in 1:(n*p+1)){

z[i,] <- x[i,]/(1+exp(-estr*(st-estc)/sd(st)))
}
X <- rbind(x,z)
resv <- tempy - tempy%*%t(X)%*%solve(X%*%t(X),tol=1e-30)%*%X
Sigv <- resv%*%t(resv)/T
Sigyz <- tempy%*%t(z)/T
Sigyx <- tempy%*%t(x)/T
Sigxx <- x%*%t(x)/T
Sigxz <- x%*%t(z)/T
Sigzz <- z%*%t(z)/T

Sigyzx <- Sigyz - Sigyx%*%solve(Sigxx)%*%Sigxz
Sigzzx <- Sigzz - t(Sigxz)%*%solve(Sigxx)%*%Sigxz

tempres <- eigen(x=Sigv,symmetric=TRUE,only.values=FALSE)
Sigv2 <- tempres$vector%*%diag(sqrt(tempres$values))%*%t(tempres$vector)
matrix_eigen <- solve(Sigv2)%*%Sigyzx%*%solve(Sigzzx)%*%t(Sigyzx)%*%solve(Sigv2)
result_eigen <- eigen(x=matrix_eigen,symmetric=TRUE,only.values=FALSE)

eigen_value <- result_eigen$values
eigen_vec <- result_eigen$vectors
eigenvec <- matrix(0,n,rank)
for(ind in 1:rank){

eigenvec[,ind] <- eigen_vec[,ind]/sqrt(sum(eigen_vec[,ind]^2))
}

A <- Sigv2%*%eigenvec #n times rank matrix
B <- t(eigenvec)%*%solve(Sigv2)%*%Sigyzx%*%solve(Sigzzx)
Gamma <- A%*%B
Phi <- (Sigyx - A%*%B%*%t(Sigxz))%*%solve(Sigxx)
reduced_v <- tempy - Phi%*%x - Gamma%*%z

return(list(gamma=estr,c=estc,estPhi=Phi,estA=A,estB=B,residual=reduced_v))
}

myoneT2forecast <- function(y,result,resB,h=12,j,Nb=1000)
# Notes: Nb = Number of bootstrap replicates;
# h = Maximum forecast horizon
# 2 variables, delay transition variable = 7
# Do one-step ahead forecast up to h here
{
oneT2newy <- matrix(0,2,h)



Chapter 11 175

Tused <- length(y[1,])
r <- result$gamma
c <- result$c
Phi <- result$estPhi
A <- result$estA
B <- result$estB
vhatm <- matrix(rowMeans(resB),2,1)
vhat <- resB - matrix(1,1,Tused-7)%x%vhatm
Cfactor <- t(chol(cov(t(vhat))))
vhat_ind <- solve(Cfactor)%*%vhat
AB <- A%*%B
sdst <- sd(y[1,1:(Tused-7)])
###################### h=1
if(h==1){

tempG <- 1/(1+exp(-r*(y[1,(Tused-7+1)]-c)/sdst))
oneT2newy[,h] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%y[,(Tused)]

+(Phi[,4:5]+AB[,4:5]*tempG)%*%y[,(Tused-1)]
+(Phi[,6:7]+AB[,6:7]*tempG)%*%y[,(Tused-2)]

}
###################### h>1
if(h>1 && h<=j){

temp1 <- sample(vhat_ind[1,],size=Nb*h,replace=TRUE)
temp2 <- sample(vhat_ind[2,],size=Nb*h,replace=TRUE)
vboots <- rbind(temp1,temp2)
vboots <- Cfactor%*%vboots
tempvhat1 <- matrix(vboots[1,]+rep(vhatm[1,],Nb*h),nrow=Nb,ncol=h)
tempvhat2 <- matrix(vboots[2,]+rep(vhatm[2,],Nb*h),nrow=Nb,ncol=h)

tempy1 <- matrix(y[,(Tused)],2,Nb) # each y(t-1) at Tused~Tused-6
tempy2 <- matrix(y[,(Tused-1)],2,Nb)
tempy3 <- matrix(y[,(Tused-2)],2,Nb)
tempy <- matrix(0,2,Nb)
tempst <- rep(0,7)
for(i in 1:h){
if(i<=7){
for(k in 1:Nb){

tempvhat <- rbind(tempvhat1[k,i],tempvhat2[k,i])
tempG <- 1/(1+exp(-r*(y[1,(Tused-7+i)]-c)/sdst))#st=y1(t-7)
tempy[,k] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%tempy1[,k]

+(Phi[,4:5]+AB[,4:5]*tempG)%*%tempy2[,k]
+(Phi[,6:7]+AB[,6:7]*tempG)%*%tempy3[,k]+tempvhat

} # end loop for k
tempy3 <- tempy2
tempy2 <- tempy1
tempy1 <- tempy
tempst[i] <- mean(tempy[1,])

} # end loop for i<7
if(i>7){

for(k in 1:Nb){
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tempvhat <- rbind(tempvhat1[k,i],tempvhat2[k,i])
tempG <- 1/(1+exp(-r*(tempst[i-7]-c)/sdst))#st=y1(t-7)
tempy[,k] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%tempy1[,k]

+(Phi[,4:5]+AB[,4:5]*tempG)%*%tempy2[,k]
+(Phi[,6:7]+AB[,6:7]*tempG)%*%tempy3[,k]+tempvhat

} # end loop for k
tempy3 <- tempy2
tempy2 <- tempy1
tempy1 <- tempy
} # end loop for i>7
oneT2newy[,i] <- matrix(c(mean(tempy[1,]),mean(tempy[2,])),2,1)

} # end loop for i in 1:h
} # end loop for h>1 and h<=j

if(h>1 && h>j){
temp1 <- sample(vhat_ind[1,],size=Nb*h,replace=TRUE)
temp2 <- sample(vhat_ind[2,],size=Nb*h,replace=TRUE)
vboots <- rbind(temp1,temp2)
vboots <- Cfactor%*%vboots
tempvhat1 <- matrix(vboots[1,]+rep(vhatm[1,],Nb*h),nrow=Nb,ncol=h)
tempvhat2 <- matrix(vboots[2,]+rep(vhatm[2,],Nb*h),nrow=Nb,ncol=h)

tempy1 <- matrix(y[,(Tused)],2,Nb) # each y(t-1) at Tused~Tused-6
tempy2 <- matrix(y[,(Tused-1)],2,Nb)
tempy3 <- matrix(y[,(Tused-2)],2,Nb)
tempy <- matrix(0,2,Nb)
tempst <- rep(0,7)
for(i in 1:j){

if(i<=7){
for(k in 1:Nb) {

tempvhat <- rbind(tempvhat1[k,i],tempvhat2[k,i])
tempG <- 1/(1+exp(-r*(y[1,(Tused-7+i)]-c)/sdst))#st=y1(t-7)
tempy[,k] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%tempy1[,k]

+(Phi[,4:5]+AB[,4:5]*tempG)%*%tempy2[,k]
+(Phi[,6:7]+AB[,6:7]*tempG)%*%tempy3[,k]+tempvhat

} # end loop for k
tempy3 <- tempy2
tempy2 <- tempy1
tempy1 <- tempy
tempst[i] <- mean(tempy[1,])

} # end loop i<7
if(i>7) {

for(k in 1:Nb){
tempvhat <- rbind(tempvhat1[k,i],tempvhat2[k,i])
tempG <- 1/(1+exp(-r*(tempst[i-7]-c)/sdst)) # st=y1(t-7)
tempy[,k] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%tempy1[,k]

+(Phi[,4:5]+AB[,4:5]*tempG)%*%tempy2[,k]
+(Phi[,6:7]+AB[,6:7]*tempG)%*%tempy3[,k]+tempvhat

} # end loop for k
tempy3 <- tempy2
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tempy2 <- tempy1
tempy1 <- tempy

} # end loop for i>7
oneT2newy[,i] <- matrix(c(mean(tempy[1,]),mean(tempy[2,])),2,1)

} # end loop for i in 1:j
} # end loop h>1 and h>j
return(oneT2newy)
}

myforecast <- function(data,h=12,H1,H2,PIN=1000){
T <- length(data[1,])
newy <- matrix(0,2,h*(H1-H2+1))
forePI <- matrix(0,PIN*2,h*(H1-H2+1))
for(j in H1:H2){

print(j)
# Add one data once. Point forecast
y <- data[,1:(T-j)]
Tused <- T-j
result <- myestimation(data=y)
res <- result$residual
newy[,((H1-j)*h+1):((H1-j+1)*h)] <- myoneT2forecast(y,result,res,h,j)
# Prediction interval
r <- result$gamma
c <- result$c
Phi <- result$estPhi
A <- result$estA
B <- result$estB
AB <- A%*%B
sdst <- sd(y[1,1:(Tused-7)])
for(PIk in 1:PIN){

# For bootstrap data to estimate one set of parameter
preInd <- sample(seq(1,(Tused-7),1),Tused-7,replace=TRUE)
preres <- result$residual[,preInd]
dataPI <- matrix(0,2,Tused)
intInd <- sample(seq(1,(Tused-7),1),1,replace=TRUE)
dataPI[,1:7] <- y[,intInd:(intInd+6)]
for(PIt in 8:Tused) {

tempG <- 1/(1+exp(-r*(dataPI[1,(PIt-7)]-c)/sdst))
dataPI[,PIt] <- Phi[,1]+(Phi[,2:3]+AB[,2:3]*tempG)%*%dataPI[,(PIt-1)]+(Phi[,4:5]
+AB[,4:5]*tempG)%*%y[,(PIt-2)]+(Phi[,6:7]+AB[,6:7]*tempG)%*%y[,(PIt-3)]+preres[,PIt-7]

} # end loop for PIt
newresult <- myestimation(dataPI)
# For one set of errors
preInd2 <- sample(seq(1,(Tused-7),1),Tused-7,replace=TRUE)
#newres <- result$residual[,preInd2]

forePI[((PIk-1)*2+1):(PIk*2),((H1-j)*h+1):((H1-j+1)*h)]<-myoneT2forecast(y,
newresult,res,h,j)

} # end loop for PIk
} # end loop for j in H1:H2
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Table 11.2: Monthly U.S. personal disposable expenditures. Forecast performance eval-
uation of an LSTAR(3)–CNF model versus a VAR(3) model. Blue-typed numbers denote
significant parameter values at the 5% nominal level.

Model Maximum forecast horizon

H = 1 H = 3 H = 6

RMSFE
LVSTAR(3)–CNF 1.334 1.112 1.016
VAR(3) 1.000 0.991 1.009

Equal forecast accuracy: DM (MDM)
Y1,t and Y2,t from VAR 0.120 (0.119) 0.033 (0.032) 0.006 (0.006 )
Y1,t from VAR NaN (NaN) -2.254 (-2.222) -0.944 (-0.928)
Y2,t from VAR 1.980 (1.964) 1.660 (1.637) 0.537 (0.528)

return(list(pointf=newy,intervalf=forePI))
}

(a) Within the R open source system, the add-on package VARS contains the function
predict to produce forecasts from a VAR model. The R-tsDyn package offers
the ready-to-use function predict rolling. However, unlike the usual prediction
methods, the function will not generate h = 1, . . . , h = H-step ahead forecasts,
but only H-step ahead forecasts. The prediction errors used in parts (b) and (c)
of this exercise are based on the function varf.m in the MATLAB Econometrics
toolbox.

(b) Table 11.2 contains the RMSFEs as well as the results of the DM and MDM test
statistics to be considered in Exercise 11.6(c). In terms of RMSFEs, the VAR(3)
model outperforms the LSTAR(3)–CNF model for all values of H. The difference
becomes minimal as H increases. As an additional check the reader may also
want to compute the GFESM measure, as defined by (11.96) in the main text.
However, we expect that for this data set and time period, the overall conclusion
will remain the same. That is, the linear VAR(3) is slightly better for short-term
out-of-sample forecasting than the LVSTAR(3)–CNF model, indicating that the
two time series {Y1,t} and {Y2,t} have no CNF.

Another extension is to apply the multivariate version of the DM test statistic
proposed by Mariano and Preve (2012); see http://www.mysmu.edu/staff/
danielpreve for some relevant MATLAB code.

(c) The next two R functions can be used to compute the DM (MDM) results.

##################################################################
# R code: Exercise 11.6(c)
# File: myDM-VmyDM.r
# Coded by: Dao Li
#
# Testing equal forecast accuracy.
#
# INPUT: h

http://www.mysmu.edu/staff/danielpreve.pdf
http://www.mysmu.edu/staff/danielpreve.pdf
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# Benchmark (N=nonlinear, L=linear):
# d = (eN[1,]^2-eL[1,]^2), Y_{1,t} from VAR
# d = (eN[2,]^2-eL[2,]^2), Y_{2,t} from VAR
##################################################################
myDM <- function (d, h, templag=NULL)
{
#d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d,na.action=na.omit,lag.max=templag,type="covariance",

plot=FALSE)$acf[, , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
STATISTIC <- mean(d, na.rm = TRUE)/sqrt(d.var)
return(STATISTIC) # normal
}
###################################################################
# R code: Exercise 11.6(c)
# File: myDM-VmyDM.r
# Coded by: Dao Li
#
# Testing equal forecast accuracy in terms of "d" instead of
# "e1" and "e2".
#
# INPUT:
# h = forecast horizon; Benchmark (N = nonlinear, L = linear):
# d = cbind(eN[1,]^2-eL[1,]^2,eN[2,]^2-eL[2,]^2), Y_{i,t} from VAR
###################################################################
VmyDM <- function (d,h,templag=NULL)
{
# d <- c(abs(e1))^power - c(abs(e2))^power
d.cov<-acf(d,na.action = na.omit,lag.max=templag,type="covariance",

plot=FALSE)$acf
n <- length(d[1,])
temp1 <- NULL
k <- 1
while(k <= n){

temp1 <- rbind(temp1,d.cov[1,1:n,k])
k <- k + 1
}

temp2 <- temp1
if(h >= 2){
for(j in 2:length(d.cov[,1,1]))

{
temp1 <- NULL
k <- 1
while(k <= n){

temp1 <- rbind(temp1,d.cov[j,1:n,k])
k <- k + 1
}

temp2 <- temp2+temp1+t(temp1)
}
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}

Clearly, in terms of equal forecast accuracy both models produce the same overall
results. However, for each of the component series {Y1,t} and {Y2,t} there is
a slight preference for using the VAR(3) model for short-term, out-of-sample,
forecasting as opposed to the LVSTAR(3)–CNF model. Hence, supporting the
results in part (b).

Remark: As a further check, the reader may want to test the null hypothesis
“nonlinear forecasts encompass linear forecasts” and, vice versa, the null hypo-
thesis “linear forecasts encompass nonlinear forecasts”. The above two R func-
tions can be easily modified for this purpose. For instance, assume that the null
hypothesis is “nonlinear forecasts encompass linear forecast at forecast horizon
h = 1”. Then the relevant function call is given by

VmyDM(d=cbind(eN[1,]^2-eL1[1,]*eN[1,],eN[2,]^2-eL1[2,]*eN[2,]),h=1).

Obviously, in the case of testing the null hypothesis “linear forecasts encompass
nonlinear forecasts” the relevant function call is given by

VmyDM(d=cbind(eL1[1,]^2-eL1[1,]*eN[1,],eL1[2,]^2-eL1[2,]*eN[2,]),h=1).

So, in both cases, the test results follow from the correlation between ei,t and
ei,t − ej,t (i, j = 1, 2). Alternatively, one may obtain test results based on the
correlation between ei,t and Ŷj,t.
The results for the MDM test statistic follow from:

modDM <- estDM*sqrt((n+1-2*hh+hh*(hh-1)/n)/n),

where estDM is the result based on VmyDM.
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12.1 By repeated application of the Kronecker product property, and using the notation
introduced in Section 12.3 of the main text, it follows that

gY (ω1) ⊗ ∙ ∙ ∙ ⊗ gY (ωr) = {H(ω1)ΣεH
∗(ω1)} ⊗ ∙ ∙ ∙ ⊗ {H(ωr)ΣεH

∗(ωr)}

= {H(ω1) ⊗ ∙ ∙ ∙ ⊗ H(ωr)}(Σε ⊗ ∙ ∙ ∙ ⊗ Σε){H
∗(ω1) ⊗ ∙ ∙ ∙ ⊗ H∗(ωr)}, (∗)

where ωr = −
∑r−1

j=1 ωj and (ω1, . . . , ωr) ∈ [0, 1]r. Now, let H1 = H(ω1)⊗∙ ∙ ∙⊗H(ωr),

H2 = H ∗
1 , and let Σ[r]

ε denote the Kronecker products of r covariance matrices Σε.
Then, from (∗), we can write

{gY (ω1) ⊗ ∙ ∙ ∙ ⊗ gY (ωr)}
−1 = H −1

2 (Σ[r]
ε )−1H −1

1 .

Moreover, using the rth-order spectral density vector fY (ω1, . . . , ωr−1) = H(ω1) ⊗
∙ ∙ ∙ ⊗ H(ωr)}Cr, we have

fY (ω1, . . . , ωr−1) = H1Cr and f∗
Y (ω1, . . . , ωr−1) = C′

rH2.

Hence, (12.26) follows immediately. Note that when m = 1, (12.26) reduces to

|fY (ω1, . . . , ωr−1)|2

fY (ω1) ∙ ∙ ∙ fY (ωr−1)fY (ω1 + ∙ ∙ ∙ + ωr−1)
=

c2
r

σ2r
ε

,
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Table 12.1: Values of the sample ACF, the sample PACF, and the R̂(`) test statistic for
the annual temperatures and tree ring width data set; T = 66. Blue-typed numbers denote
significant values at the 5% nominal level.

Lag (`) ACF PACF R̂ij(`)

1 0.017 0.211 0.017 0.211 0.257 0.280
0.048 0.355 0.048 0.355 0.246 0.332

2 0.044 0.158 0.034 0.097 0.238 0.330
0.137 0.146 0.120 0.010 0.238 0.242

3 -0.152 0.000 -0.165 -0.075 0.216 0.305
0.040 0.275 -0.010 0.192 0.256 0.323

4 -0.144 0.182 -0.178 0.171 0.200 0.257
-0.150 0.260 -0.152 0.097 0.266 0.300

5 0.065 0.065 0.130 0.016 0.279 0.212
-0.005 0.220 0.044 0.134 0.291 0.281

where Cum(εt, εt) ≡ Var(εt) = σ2
ε , and cr = E(εr

t ) is the rth-order cumulant of the
process {εt}. With r = 3, the above result reduces to equation (4.12) in the main
text.

12.2 Table 12.1 contains various statistics for the tree ring data set: annual temperatures
(Y1,t) and annual tree ring widths (Y2,t) for the time period 1907 – 1972 (T = 66).

(a) The sample ACF detects only a linear relation between Y2,t and Y2,t−1, between
Y2,t and Y2,t−3, and between Y2,t and Y2,t−4 at the 5% nominal significance level.
At the 10% nominal significance level there is also a relationship between Y1,t

and Y2,t−1. The sample PACF cuts off after lag 1, suggesting a linear VAR(1)
model for the data. Thus, the overall pattern of these statistics agrees with the
observations made in Example 11.5 of the main text.

(b) In contrast to the results in part (a), the R̂(`) test statistic indicates a nonlinear
relationship between Y2,t and Y2,t−1, between Y1,t and Y2,t−2, between Y1,t and
Y1,t−3, between Y1,t and Y2,t−3, and between Y2,t and Yt−4 at the 5% nominal
significance level. One may, however, erroneously conclude from these results
that there exists a causal nonlinear relationship from lagged values of Y2,t to
Y1,t. In fact, both variables Y1,t and Y2,t are highly influenced by the ENSO
phenomenon. Additionally, tree ring widths reflect changes in other climatic
variables, such as precipitation.

To compute critical values of the R̂(`) test statistic for bivariate time series of size nr,
the relevant MATLAB codes are given below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB code: Exercise 12.2
% File: Rtest.m
%
% Purpose: To apply nonlinear vector time series lag
% identification by the R test statistic to a given data set.
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%
% Converted from FORTRAN90 code written by Jane L. Harvill.
% INPUT: data = A BIVARIATE TIME SERIES of size (nr * nc=2)
% OUTPUT: rrr = values of R_{i,j}(\ell) test statistic
% for \ell=1,...,nlag, i,j=1,...,nc, i.e.
% two matrices of size (nlag * nc=2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[nr, nc] = size(data);
in = 30; % 30-point Gaussian quadrature rule
nlag = 5; % Number of lags
x = data;
rrr = compr(nr,nlag,nc,x,in);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x,w]=lgwt(N,a,b)
% This script is for computing definite integrals using Legendre-Gauss
% Quadrature. Computes the Legendre-Gauss nodes and weights on an
% interval [a,b] with truncation order N.
% Suppose you have a continuous function f(x) which is defined on [a,b]
% which you can evaluate at any x in [a,b]. Simply evaluate it at all
% of the values contained in the x vector to obtain a vector f. Then
% compute the definite integral using sum(f.*w);
%
% Written by Greg von Winckel - 02/25/2004
N = N-1;
N1 = N+1; N2 = N+2;
xu = linspace(-1,1,N1)';
% Initial guess
y = cos((2*(0:N)'+1)*pi/(2*N+2))+(0.27/N1)*sin(pi*xu*N/N2);
% Legendre-Gauss Vandermonde Matrix
L = zeros(N1,N2);
% Derivative of LGVM
Lp = zeros(N1,N2);
% Compute the zeros of the N+1 Legendre polynomial
% using the recursion relation and the Newton-Raphson method
y0 = 2;
% Iterate until new points are uniformly within epsilon of old points
while max(abs(y-y0))>eps

L(:,1) = 1;
Lp(:,1) = 0;
L(:,2) = y;
Lp(:,2) = 1;
for k=2:N1

L(:,k+1) = ((2*k-1)*y.*L(:,k)-(k-1)*L(:,k-1))/k;
end
Lp = (N2)*(L(:,N1)-y.*L(:,N2))./(1-y.^2);
y0 = y;
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y = y0-L(:,N2)./Lp;
end

% Linear map from[-1,1] to [a,b]
x = (a*(1-y)+b*(1+y))/2;
% Compute the weights
w = (b-a)./((1-y.^2).*Lp.^2)*(N2/N1)^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = kuniv(n,x,xt) % Estimate of univariate density
hx = 0.85*n^(-1/5); % Bandwidth
f = 0;
for i=1:n

f = f+tpdf((x-xt(i))/hx,4); % Univ. Student t density with df=4
end
f = f/(n*hx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function r = compr(n,nlag,k,x,in)
prod = x.*x;
sum1 = sum(x(:,1:2))/n;
sigx = sum(prod(:,1:2));
for i=1:k

sigx(i) = ((sigx(i)-n*sum1(i)^2)/(n-1))^(0.5);
end
for i=1:nlag

for j=1:k
for l=1:k

for m=1:n-i
xt(m) = (x(m+i,j)- sum1(j))/sigx(j);
yt(m) = (x(m,l) - sum1(l))/sigx(l);

end
[rho,deltai] = hbivar2(in,n-i,xt,yt);
r(i,j,l) = deltai;
rt(i,j,l) = rho;
if (deltai < 0)

deltai = 0;
end
r(i,j,l) = (1.0-exp(-2*deltai))^(0.5); % R(\ell) test statistic

end
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [rho,h] = hbivar2(in,n,xt,yt)
rho = sum(xt.*yt)/n;
xlow1 = min(xt);
xupp1 = max(xt);
xlow2 = min(yt);
xupp2 = max(yt);

[qx,qwx] = lgwt(in,-1,1);
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for i=1:in
tempx = -qx(i)*(xupp1-xlow1+2)/2+(xupp1+xlow1)/2;
tempy = -qx(i)*(xupp2-xlow2+2)/2+(xupp2+xlow2)/2;
fx(i) = kuniv(n,tempx,xt);
fy(i) = kuniv(n,tempy,yt);

end
h = 0;
for i=1:in

for j=1:in
tempx = -qx(i)*(xupp1-xlow1+2)/2+(xupp1+xlow1)/2;
tempy = -qx(j)*(xupp2-xlow2+2)/2+(xupp2+xlow2)/2;
f = kbivar(n,tempx,tempy,xt,yt,rho);
h = h+(log(f)-log(fx(i))-log(fy(j)))*f*qwx(i)*qwx(j);

end
end

h = h*(xupp1-xlow1+2)*(xupp2-xlow2+2)/4;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = kbivar(n,x,y,xt,yt,rho); % Estimate of bivariate density
% Product kernel of Student's t distributions with bandwidth:
hx = (0.85*(1-(rho^2))^(5/12))*(1+0.5*(rho^2))^(-1/6)*n^(-1/6);
hy = hx;
f = 0;
for i=1:n

f = f+tpdf((x-xt(i))/hx,4)*tpdf((y-yt(i))/hy,4);
end
f = f/(n*hx*hy);

12.3 (a)+(b)
Table 12.2 shows p-values of the modified nonlinear causality test statistic Q∗

T,W (h),
defined by (12.41) in the main text, for time periods P4 (T = 266), P3 (T = 179),
and P2 (T = 301). To allow for a comparison with the test results displayed in Figure
12.5 of the main text, we also included p-values for the time period P1 (T = 216), at
lag 1.
The test statistic Q∗

T,W (h) does not detect any causal relationship in the oldest time
period P4. Also in time period P3, covering the late Pliocene, the test statistic suggests
an absence of nonlinear causality among all variables, except for δ18O → δ13C. Dust
flux influences both δ13C and δ18O in period P2 (early Pleistocene). Comparing time
periods P2 and P1, it seems that the coupling between δ13C and δ18O has become
stronger over time. The role of the variables dust flux and insolation has, however,
diminished. So evidence that these two variables are the driven force behind the other
two variables is hardly available. This result is line with the conclusion of Diks and
Mudelsee (2000). Essentially, the test results suggest a bi-directional causal nonlinear
relationship between δ13C, an indicator of the strength of North Atlantic Deep Water,
and δ18O, an indicator of the global ice volume.
For completeness the R code for computing the modified nonparametric causality test
statistic Q∗

T,W (h) is given below. The HJ test statistic QT,W (h), defined by (12.37)
in the main text, can be downloaded from the website of this book; i.e. function hj.r.
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#######################################################################
# R code: Exercise 12.3
# File: dp.r
# Coded by: Marcin Wolski
#
# Calculates the Diks-Panchenko (DP, 2006) p-values of the modified
# bivariate nonparametric causality test statistic.
#
# Reference:
# Diks, C. and Panchenko, V. (2006).
# A new statistic and practical guidelines for nonparametric Granger
# causality testing.
# Journal of Economic Dynamics & Control, 30(9-10), 1647-1669.
# DOI: 10.1016/j.jedc.2005.08.008.
#######################################################################
dp = function(x, y, lag=1, lagmax=1, epsilon=1.5) {
N = length(x)
IYij = IXYij = IYZij = IXYZij = 0
disx = disy = disz = 0
h = Cy = Cxy = Cyz = Cxyz = rep(0,N)
T2 = 0
n = N-lagmax

# Calculating correlation integrals
i = lagmax+1
while(i<(N+1)) {

Cy[i] = Cxy[i] = Cyz[i] = Cxyz[i] = 0
j = lagmax+1
while(j<(N+1)) {

if(j!=i) {
disx = disy = 0
for(s in 1:lag) {

disx = max(abs(x[i-s]-x[j-s]),disx)
}
for(s in 1:lagmax) {

disy = max(abs(y[i-s]-y[j-s]),disy)
}
if(disy<=epsilon) {
Cy[i] = Cy[i]+1

if(disx<=epsilon) {
Cxy[i] = Cxy[i]+1

}
disz = max(abs(y[i]-y[j]),disy)
if(disz<=epsilon) {

Cyz[i] = Cyz[i]+1
if(disx<=epsilon) {

Cxyz[i] = Cxyz[i]+1
}

}



186 Solutions

}
}

j = j+1
}

Cy[i] = Cy[i]/n
Cxy[i] = Cxy[i]/n
Cyz[i] = Cyz[i]/n
Cxyz[i] = Cxyz[i]/n
h[i] = h[i]+2*(Cxyz[i]*Cy[i]-Cxy[i]*Cyz[i])/6 # to check!
j = lagmax+1
while(j<(N+1)) {

if(j!=i) {
IYij = IXYij = IYZij = IXYZij = 0
disx = disy = 0
for(s in 1:(lag)) {

disx = max(abs(x[i-s]-x[j-s]),disx)
}
for(s in 1:(lagmax)) {

disy = max(abs(y[i-s]-y[j-s]),disy)
}
if(disy<=epsilon) {

IYij = 1
if(disx<=epsilon) {

IXYij = 1
}
disz = max(abs(y[i]-y[j]),disy)
if(disz<=epsilon) {

IYZij = 1
if(disx<=epsilon) {

IXYZij = 1
}

}
}

h[j]=h[j]+2*(Cy[i]*IXYZij-Cyz[i]*IXYij)/
(6*n)+2*(Cxyz[i]*IYij-Cxy[i]*IYZij)/(6*n)

}
j = j+1
}
T2 = T2+Cxyz[i]*Cy[i]-Cyz[i]*Cxy[i]

i = +1
}
T2 = T2/n
i = lagmax+1
while(i<(N+1)){

h[i] = h[i]-T2
i = i+1
}
# End of calculating correlation integrals
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K = floor(sqrt(sqrt(N)))
ohm = rep(0,K)
ohm[1] = 1
for(k in 2:(K+1)) {

ohm[k] = 2*(1-(k-1)/K)
}

# Autocovariance of h
cov = rep(0,K)
for(k in 1:K) {

for(i in (lagmax+k):N) {
cov[k] = cov[k]+h[i]*h[i-k+1]

}
cov[k] = cov[k]/(n-(k-1))

}

VT2 = 0
for(k in 1:K) {

VT2 = VT2+9*ohm[k]*cov[k]
}

T2_TVAL = T2*sqrt(n)/sqrt(VT2)

# Calculating p-values
p_T2 = pnorm(-T2_TVAL)
return(p_T2)
}

Remark 1: In the derivation of the asymptotic distribution of the Diks–Panchenko
(DP) bivariate causality test statistic the authors follow the approach of Powell and
Stoker (1996). The main drawback is that i.i.d. data are assumed, which is obvi-
ously not the case in time series analysis. Another problem stems from the fact that
the Powell–Stoker approach was originally developed in the context of 2nd order U-
statistics. The DP test statistic involves U-statistics of the 3rd order, and the authors
were forced to limit attention to testing only lag one dependence.

The papers by Yoshihara (1976) and Denker and Keller (1986) do not restrict the
data to be i.i.d. On the other hand, their results are only applicable to statistics
with kernels that are independent of the length T of the time series under study.
Khashimov (1993, Thm. 2) gives a result for weakly dependent data and kernels
that depends on T directly. This theorem, however, is concerned with 2nd order U-
statistics. A sketch of the proof for kernels with three arguments is given by Opuchlik
(2009) in an unpublished MPhil thesis. Moreover, the thesis contains MC simulation
results showing that the DP test statistic is asymptotically normally distributed for
0.25 ≤ β ≤ 0.5, with β the rate at which the bandwidth h shrinks (recall h = cT−β ,
with c a scaling factor). This interval is much wider than the interval β ∈ ( 1

4 , 1
3 )

derived by Diks and Panchenko.

Remark 2: The exercise can be extended by computing the sharped version of the
nonparametric Granger causality test statistic Qs

T,W (h) (see (12.47) of the main text),
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Table 12.2: Extended climate change data set. P -values obtained by the modified bivariate
(pairwise) nonparametric causality test statistic Q∗

T,W (h), with bandwidth fixed at h = 1.5,
and embedding dimension (lag) `X = `Y = 1. The notation ∗∗ marks a p-value < 0.01, and
∗ marks a p-value lying between 0.01 and 0.05. Each entry provides information about the
null hypothesis: Yi,t (top row) does not cause Yj,t (i 6= j; i, j = 1, . . . , 4) (left column), i.e.
Yi,t 9 Yj,t.

δ13C δ18O Dust flux Insolation δ13C δ18O Dust flux Insolation

Period P1 (since 894 ka) Period P2 (2470 – 987 ka)
δ13C 0.000∗∗ 0.044∗ 0.026∗ 0.072 0.002∗∗ 0.208
δ18O 0.004∗∗ 0.228 0.173 0.263 0.006∗∗ 0.034∗

Dust flux 0.825 0.214 0.057 0.763 0.639 0.055
Insolation 0.780 0.807 0.455 0.349 0.312 0.628

Period P3 (3585 – 2625 ka) Period P4 (5000 – 3585 ka)
δ13C 0.024∗ 0.623 0.658 0.760 0.084 0.106
δ18O 0.196 0.363 0.567 0.398 0.398 0.755
Dust flux 0.485 0.168 0.816 0.184 0.599 0.067
Insolation 0.796 0.213 0.348 0.079 0.293 0.308

proposed by Diks and Wolski (2016). The C source codes can be downloaded from
the website http://qed.econ.queensu.ca/jae/datasets/diks001/. 5

Table 12.3 shows p-values for the various relations. One may readily observe that
there is a significant bi-directional nonlinear relationship between δ13C and δ18O, for
each of the two conditioning variables, i.e., insolation, and dust flux. This confirms
earlier results presented in Example 12.6 of the main text. Also, after conditioning
on dust flux, we see that insolation is still affecting δ13C in a nonlinear way.

Using the dsdp 4vars.c program, with conditioning on the variables insolation and dust
flux jointly, we observe the following bi-directional causal nonlinear relationship δ13C
�� δ18O (p-values in the range 1% – 5%), for both normal and uniform marginals.

Remark 3: The paper by Davidson et al. (2016) applies tests for Granger causality in
the context of a linear VAR model using a different climate data set. The data can be
downloaded from the website http://people.exeter.ac.uk/jehd201/research.
html#dps.

12.4 (a) Table 12.4 shows values of |Σ̂ε| for both the unrestricted and restricted (additive)
PMARS–VARX models fitted to the data. Clearly, the unrestricted ARX model
has the lowest value of |Σ̂ε| at lag ` = 15, with 57 terms, whereas the “best”
additive ARX model is attained as lag ` = 3, with 19 terms. Note that the

5Three files are available: dp.c (calculates the original DP test statistic with Gaussian kernel),
dsdp.c (calculates the sharpened DP test statistic in a 3-variate setting), and dsdp 4vars.c (calculates
the sharpened DP test statistic in a 4-variate setting). If the main program is dp.c, then the
compiling command is: GCC-O DP DP.C -LM. The command should be in lower case letters and
running in a Linux/Windows environment (e.g., within Cygwin for Windows users), while “dp” is
the executive file.

http://people.exeter.ac.uk/jehd201/research.html#nameddest=dps
http://people.exeter.ac.uk/jehd201/research.html#nameddest=dps
http://qed.econ.queensu.ca/jae/datasets/diks001/.pdf
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Table 12.3: Extended climate change data set for time period P1. P -values obtained
by the nonparametric Granger causality test statistic Qs

T,W (h), with bandwidth selection as
suggested by Diks and Wolski (2016, Section 4), and embedding dimension (lag) `X = `Y =
`Q = 1. The data are standardized by transforming the marginals to either a normal (first
line) or a uniform (second line) distribution. The notation ∗∗ marks a p-value < 0.01, and
∗ marks a p-value lying between 0.01 and 0.05. Each entry provides information about the
null hypothesis: Yi,t (top row) does not cause Yj,t (i 6= j; i, j = 1, . . . , 3) (left column), i.e.
Yi,t 9 Yj,t, with conditioning on a fourth variable.

Conditioning on Insolation Conditioning on Dust flux
δ13C δ18O Dust flux δ13C δ18O Insolation

δ13C 0.015∗ 0.060 δ13C 0.004∗∗ 0.021∗

0.016∗ 0.083 0.010∗ 0.057
δ18O 0.002∗∗ 0.238 δ18O 0.002∗∗ 0.051

0.036∗ 0.181 0.036∗ 0.066
Dust flux 0.466 0.181 Insolation 0.220 0.313

0.401 0.460 0.237 0.401

Conditioning on δ13C Conditioning on δ18O
δ18O Dust flux Insolation δ13C Dust flux Insolation

δ18O 0.224 0.057 δ13C 0.073 0.073
0.216 0.096 0.097 0.127

Dust flux 0.169 0.330 Dust flux 0.489 0.326
0.401 0.454 0.313 0.466

Insolation 0.312 0.104 Insolation 0.481 0.217
0.423 0.051 0.550 0.131

Table 12.4: Determinant of the residual covariance matrices of the unrestricted and re-
stricted (additive) PMARS–VARX models fitted to the Icelandic river flow data set.

PMARS model

Lags
1 2 3 4 5 6 7 8 9 10

VARX 74.30 81.33 80.83 80.40 80.32 80.36 80.45 77.88 80.61 82.63
Additive VARX 132.26 112.72 102.15 102.57 102.51 100.29 100.40 100.74 100.92 102.98

Lags
11 12 13 14 15 16 17 18 19 20

VARX 79.97 82.91 83.05 83.20 44.12 84.29 74.81 75.17 61.10 61.20
Additive VARX 101.17 101.35 101.53 101.72 103.83 104.02 102.18 104.30 100.42 100.51
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maximum number of lags (here, 15) of the unrestricted VARX model is the
same as identified by AIC for the VTARX model in Table 11.4 of the main text.

(b) The estimated residual covariance matrix for the “best” fitted PMARS–VARX
model is given by

Σ̂ε,VARX =

(
21.971 1.247
1.247 2.079

)

, R2 = 0.95 (Q1,t) and 0.936 (Q2,t),

where the time series {Q1,t} denotes the daily flow of the Jökulsá Eystri river,
and the time series {Q2,t} is the daily flow of the Vatnsdalsá river. The pooled

estimated residual covariance matrix follows from Σ̂(1)
ε and Σ̂(2)

ε in Table 11.4
of the main text, and is given by

Σ̂ε,VTARX =

(
27.874 1.416
1.416 3.521

)

, |Σ̂ε,VTARX| = 96.145.

So, in terms of residual variances, the unrestricted PMARS–VARX model is
to be preferred over the VTARX model. Moreover, in terms of goodness-of-
fit, there is no clear difference between the VTARX model and the best fitted
additive PMARS–VARX model at lag ` = 3, with R2 = 0.926 (Q1,t) and R2 =
0.891 (Q2,t).

(c) If we consider only terms with absolute coefficient value more than twice the
estimated standard error, the unrestricted PMARS–VARX model so obtained
is summarized in Table 12.5. The model reveals that temperature Tt plays
a dominant role in modulating the dynamics of Q1,t. For the variable Q2,t

we see three subsystems: low temperatures (≤ 0◦C), moderate temperatures
(0◦C< Tt ≤ 1.5◦C), and high temperatures (> 1.5◦C). This is in good agreement
with the subsystems obtained by Astatkie et al. (1997), albeit for the flow series
{Q1,t}; see Exercise 2.11.

For the variable Q1,t−k with k = 0, 1, and 2, eight threshold values are specified
whereas 13 thresholds are detected for the variable Q2,t−k. These threshold
values may be used as proxies for the changes in soil moisture conditions in
the basin of each river in the absence of measured indices. Thus, for instance,
for the Jökulsá Eystri river a very wet soil condition is represented by Q1,t−k ≥
134m3/s (k = 1, 2), and an extremely dry soil condition by the fact that Q1,t−1 <
30.2m3/s.

It is interesting to see that precipitation at time t− 1 has only a minor effect on
Q1,t−2. In contrast, lagged values of the variable Pt have no effect on Q2,t. This
is different from the results presented in Exercise 2.11 and Table 11.4 of the main
text. Finally, note from Table 12.5 that there seems to be a feedback relationship
between lagged values of the two river flow series Q1,t and Q2,t. Sample cross-
correlations computed between the series confirm this relationship. However,
this result seems to be spurious and could be an indication that important
variables like evapotranspiration and soil moisture indices are missing from the
analysis; see also part (d) below.

(d) Table 12.6 shows p-values for the modified bivariate nonparametric causality
test statistic Q∗

T,W (h) with h = 1.5 and lags `Q1 = `Q2 = 1, . . . , 8. There is no
evidence to reject the null hypothesis (H0): “Q1,t does not Granger cause Q2,t”.
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Table 12.5: Estimated coefficients of the “best” fitted unrestricted PMARS–VARX model
for the Icelandic river flow data set. Only terms with absolute coefficient value more than
twice the estimated standard error are given.

Terms Q1,t Q2,t Terms Q1,t Q2,t

Constant 2.95 -1.62 (Q1,t−1 − 30.2)+ -1.06 -0.22
Q1,t−1 1.05 0.23 (Q1,t−2 − 33.2)+ 0.62 0.18
Q2,t−1 -2.32 1.43 (Q2,t−1 − 13)+ × Q1,t−2 0.05 –
Q2,t−2 0.84 -0.42 (Q1,t−2 − 134)+ × Q2,t−1 -0.46 –
(Q1,t−1 − 98)+ -0.97 – (Q1,t−2 − 134)+ × Q2,t−2 0.27 0.10
Tt -0.95 – (Q1,t−2 − 90)+ × Tt 0.06 –
Q1,t−1 × Tt -0.13 – Q1,t−2 × Pt−1 -0.01 –
Q2,t−1 × Tt -0.10 -0.03 (Q2,t−1 − 16.9)+ 5.31 2.40
Q2,t−1 × (Tt − 0.3)+ – 0.18 (Q2,t−1 − 10.8)+ 11.50 –
Q1,t−2 × Tt -0.08 – (Q2,t−2 − 18.4)+ -4.20 -2.24
Q1,t−1 × Q2,t−1 0.16 0.01 (Q2,t−1 − 11.9)+ -11.21 –
Q1,t−1 × Q2,t−2 -0.07 -0.02 Q2,t−14 – 0.12
(Q1,t−1 − 134)+ 6.72 -0.56 (Q2,t−14 − 32.9)+ – 0.65
(Q1,t−2 − 134)+ 2.35 -0.89 Q2,t−1 × Q2,t−14 0.02 -0.01
(Q2,t−2 − 9.02)+ – 0.82 (Q2,t−1 − 10.8)+ × Tt – 0.09
(Q2,t−1 − 23)+ 8.08 1.88 (Q2,t−1 − 9.9)+ -3.88 –
(Q2,t−2 − 9.9)+ -0.27 0.21 (Q2,t−2 − 9.9)+ -2.36 0.67
Q1,t−2 × Q2,t−1 -0.09 -0.02 (Q2,t−1 − 20.1)+ -4.75 -1.02
Q1,t−2 × Q2,t−2 0.03 0.01 (Q2,t−1 − 25.7)+ -4.89 -1.84
Q2,t−3 × Tt 0.07 0.02 (Q1,t−1 − 50.9)+ -0.66 –
Q2,t−1 × (Tt − 1.5)+ – -0.12 (Q1,t−1 − 50.9)+ × Tt -0.05 –
(Q2,t−1 − 23)+ × Q1,t−2 – 0.01 (Q1,t−1 − 54.9)+ × Tt 0.73 –
(Q2,t−1 − 13)+ 5.58 -0.15 (Q2,t−1 − 25.7)+ × Tt -0.10 0.25
Q1,t−1 × (Q2,t−1 − 13)+ -0.11 – (Q2,t−1 − 25.7)+ × (Tt − 1.5)+ 0.86 -0.94

Table 12.6: Icelandic river flow data set. P -values of the modified bivariate (pairwise)
nonparametric causality test statistic Q∗

T,W (h), with bandwidth fixed at h = 1.5 and lag
lengths `Q1 = `Q2 = 1, . . . , 8.

H0 Lags

1 2 3 4 5 6 7 8

Q1,t 9 Q2,t 0.874 0.953 0.991 0.996 0.996 0.996 0.997 0.995
Q2,t 9 Q1,t 0.009 0.012 0.012 0.013 0.013 0.014 0.020 0.026
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On the other hand, there is sufficient evidence to reject the null hypothesis:
“Q2,t does not Granger cause Q1,t”. So, for all lag lengths, the test statistic
detects a uni-directional nonlinear relationship Q2,t → Q1,t.

Remark: As a further check of the adequacy of the fitted PMARS–VARX model,
the multivariate quantile residuals may be tested for normality, autocorrelation, and
heteroskedasticity using the MATLAB codes in the file Matl-code-Quantile-residuals-
multivariate.zip.



Computer Codes1

The computer codes below can be found at two locations :

http://www.jandegooijer.nl and http://extras.springer.com (ISBN 978-3-319-43251-9).

EXAMPLES EXERCISES MISCELLANEA

Chapter 1

Example 1-5.zip (R code) Exercise 1-8-M.zip (M code) Resnick-vdBerg-test.txt (S-Plus)
Example 1-8.zip (F code Exercise 1-8-G.zip (G code)

& exe files)
Example 1-9.zip (Data &

M code)

Chapter 2

Example 2-8.zip (M code) Exercise 2-9.zip (R code) Gonzalo-Wolf-SETAR.zip (C code)
Example 2-9.zip (F code Exercise 2-10.zip (R code) GRASP.zip (M code)

& exe file) Exercise 2-11.zip (R code) SEASETAR.zip (F code)
Exercise 2-12.zip (M code)

Chapter 3

Example 3-3.zip (R code) Exercise 3-8.zip (M code)

Chapter 4

Example 4-4.zip (M code) Exercise 4-4.zip (R code) Hinich-tests.zip (F code)
Section 4-5.zip (M code) Exercise 4-4b.zip (M code) Nonlinear-toolbox.zip (exes file)

Exercise 4-5.zip (R code) Simulation-freq-domain-
tests.zip (M code)

Subba-Rao-program4.zip (F code)

Chapter 5

Example 5-1.zip (M code) Exercise 5-4.zip (G code) AIC new.f90 (F code)
Example 5-2.zip (F code BL-U-root-Charemza.zip (G code)

& exe file) LM-F6-test.g (G code)
LR-Chan.zip (F code

& exe file)
ML-BL-U-root-Hristova.zip (G code)
NLTS.f (F code)
NLTS-S-Plus.zip (S-Plus)
SETAR-two-regimes.zip (R code)

1File type: F = FORTRAN, G = GAUSS, and M = MATLAB.
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EXAMPLES EXERCISES MISCELLANEA

Chapter 6

Example 6-1.zip (M code) Exercise 6-5.m (M code) Amendola-Francq.zip (R code)
Example 6-2.zip (M & R codes) Exercise 6-5-remark.r Bagnato.zip (M code)
Example 6-3.zip (F code) (R code) Ling-Tong.zip (F code)
Example 6-4.zip (R code) Exercise 6-6.m (M code) STAR3-32bit.zip (F code)
Example 6-5.zip (M code) Exercise 6-8.r (R code) Strikholm-
Example 6-6.zip Exercise 6-9.m (M code) Teräsvirta.zip (G code)

(Renamed exe and dll) TARfit.src (G code)
Example 6-7.zip (M code)
Example 6-8.zip (G code)

Section 6:4 : Threshold models :
TARSO.zip (F code) (Renamed exe and dll)

DTGARCH-GA.zip
MSETAR-GA.zip
PLTAR-GA.zip
SETAR-GA.zip

Giovanis-GA.zip (M code)
Multiple-regime-GA (M code)

Chapter 7

Example 7.6 and Section 7.5 : Exercise 7-7.zip (M code)
Rank-based-BDS.zip (C code)

Section 7.3.3 :
Bagnato-et-al.zip (R code)
Hong.zip (G code)
Hong-Lee.zip (G code)
Hong-White.zip (G code)
Skaug-Tjostheim.zip (C code)

Chapter 8

Section 8.2 and Application : Exercise 8-6.r (R code)
Chen-TR-test (G code)
Copula-based-TR-test (M code)
Ramsey-Rothman.zip (F code

& exe files)
Rever2.zip (C code and

Linux/Windows executable)

Chapter 9

Example 9-8.zip (R code) Exercise 9-1.zip (M code) Algorithm-93.ox (Ox code)
Example 9-9.zip (S-Plus) Exercise 9-2a-b.zip (M code) FCAR.zip (S-Plus)
Example 9-10.zip (SAS) Exercise 9-2b.zip (R code) FPE-additive.zip (G code)

Exercise 9-4.zip (M code) Mean median.m (M code)
Exercise 9-5.zip (R code)

Chapter 10

Example 10-2.zip (R code) Exercise 10-10.zip (R code) Pan-Politis.zip (R code)
Example 10-3.zip (F code) Exercise 10-11b.zip (R code) Regions.zip (G code)
Example 10-4.zip (M code) Exercise 10-12.zip (M code)
Example 10-6 (RATS & M codes)
Example 10-7.zip (C code

and executables)
Example 10-8.zip (R code)
Section10-1-1 (F code)
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EXAMPLES EXERCISES MISCELLANEA

Chapter 11

Example 11-1.zip (M code) Exercise 11-5c.zip (R code) Appendix 11A.zip (M code)
Example 11-2.zip (M code) Exercise 11-6.zip (R code) MTARfor.f (F code)
Example 11-3.zip (M code) Quantile-residuals.zip (M code)
Example 11-4.zip (M code) Robust-VSETAR.zip (M code)
Example 11-5.zip (F code) TEVCM.zip (F code)
Example 11-6.zip (F & M codes) V-ARasMA-
Application.zip (F code asQGARCH.zip (RATS)

& exe files)

Chapter 12

Example 12-1.zip (Figures) Exercise 12-2.zip (M code) Anoruo–noncausality.zip (M code)
Example 12-2.zip (M code) Exercise 12-3.zip (C code) Hiemstra-Jones.r (R code)
Example 12-3.zip (M & R codes) POLYMARS.zip (S-Plus)
Example 12-4.zip (C & M codes) VFCAR.zip (F & M
Example 12-5.zip (F code codes)

& exe files)
Example 12-6.zip (C & M codes

and executables)
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